缓存穿透,缓存击穿,缓存雪崩的原理及解决方案

前言

设计一个缓存系统,不得不要考虑的问题就是:缓存穿透、缓存击穿与失效时的雪崩效应

缓存穿透

缓存穿透是指查询一个一定不存在的数据,由于缓存是不命中时被动写的,并且出于容错考虑,如果从存储层查不到数据则不写入缓存,这将导致这个不存在的数据每次请求都要到存储层去查询,失去了缓存的意义。在流量大时,可能DB就挂掉了,要是有人利用不存在的key频繁攻击我们的应用,这就是漏洞。举例:如发起为id为“-1”的数据或id为特别大不存在的数据。这时的用户很可能是攻击者,攻击会导致数据库压力过大。

解决方式:

  • 布隆过滤器
    将所有可能存在的数据哈希到一个足够大的bitmap中,一个一定不存在的数据会被 这个bitmap拦截掉,从而避免了对底层存储系统的查询压力。
  • 空结果进行缓存
    简单粗暴的方法(我们采用的就是这种),如果一个查询返回的数据为空(不管是数 据不存在,还是系统故障),我们仍然把这个空结果进行缓存,但它的过期时间会很短,最长不超过五分钟

缓存雪崩

缓存雪崩是指在我们设置缓存时采用了相同的过期时间,导致缓存在某一时刻同时失效,请求全部转发到DB,DB瞬时压力过重雪崩。

解决方式:
(1)加锁或者队列的方式保证缓存的单线 程(进程)写,从而避免失效时大量的并发请求落到底层存储系统上
(2)将缓存失效时间分散开,比如我们可以在原有的失效时间基础上增加一个随机值,比如1-5分钟随机,这样每一个缓存的过期时间的重复率就会降低,就很难引发集体失效的事件

缓存击穿

对于一些设置了过期时间的key,如果这些key可能会在某些时间点被超高并发地访问,是一种非常“热点”的数据。这个时候,需要考虑一个问题:缓存被“击穿”的问题,这个和缓存雪崩的区别在于这里针对某一key缓存,前者则是很多key。

缓存在某个时间点过期的时候,恰好在这个时间点对这个Key有大量的并发请求过来,这些请求发现缓存过期一般都会从后端DB加载数据并回设到缓存,这个时候大并发的请求可能会瞬间把后端DB压垮。
解决方式:
(1)使用互斥锁(mutex key)
这种解决方案思路比较简单,就是只让一个线程构建缓存,其他线程等待构建缓存的线程执行完,重新从缓存获取数据就可以了(如下图)

如果是单机,可以用synchronized或者lock来处理,如果是分布式环境可以用分布式锁就可以了(分布式锁,可以用memcache的add, redis的setnx, zookeeper的添加节点操作)。

下面是memcache的伪代码实现:

if (memcache.get(key) == null) {
    // 3 min timeout to avoid mutex holder crash
    if (memcache.add(key_mutex, 3 * 60 * 1000) == true) {
    value = db.get(key);
    memcache.set(key, value);
    memcache.delete(key_mutex);
} else {
    sleep(50);
    retry();
    }
}

如果换成redis,就是:

String get(String key) {
    String value = redis.get(key);
    if (value  == null) {
        if (redis.setnx(key_mutex, "1")) {
            // 3 min timeout to avoid mutex holder crash
            redis.expire(key_mutex, 3 * 60)
                value = db.get(key);
            redis.set(key, value);
            redis.delete(key_mutex);
        } else {
            //其他线程休息50毫秒后重试
            Thread.sleep(50);
            get(key);
        }
    }
}  

(2)"提前"使用互斥锁(mutex key):
在value内部设置1个超时值(timeout1), timeout1比实际的memcache timeout(timeout2)小。当从cache读取到timeout1发现它已经过期时候,马上延长timeout1并重新设置到cache。然后再从数据库加载数据并设置到cache中。伪代码如下:

v = memcache.get(key);
if (v == null) {
    if (memcache.add(key_mutex, 3 * 60 * 1000) == true) {
        value = db.get(key);
        memcache.set(key, value);
        memcache.delete(key_mutex);
    } else {
        sleep(50);
        retry();
    }
} else {
    if (v.timeout <= now()) {
        if (memcache.add(key_mutex, 3 * 60 * 1000) == true) {
            // extend the timeout for other threads
            v.timeout += 3 * 60 * 1000;
            memcache.set(key, v, KEY_TIMEOUT * 2);
            // load the latest value from db
            v = db.get(key);
            v.timeout = KEY_TIMEOUT;
            memcache.set(key, value, KEY_TIMEOUT * 2);
            memcache.delete(key_mutex);
        } else {
            sleep(50);
            retry();
        }
    }
}  

(3)"永远不过期":
这里的“永远不过期”包含两层意思:
(1) 从redis上看,确实没有设置过期时间,这就保证了,不会出现热点key过期问题,也就是“物理”不过期。
(2) 从功能上看,如果不过期,那不就成静态的了吗?所以我们把过期时间存在key对应的value里,如果发现要过期了,通过一个后台的异步线程进行缓存的构建,也就是“逻辑”过期

从实战看,这种方法对于性能非常友好,唯一不足的就是构建缓存时候,其余线程(非构建缓存的线程)可能访问的是老数据,但是对于一般的互联网功能来说这个还是可以忍受。

String get(final String key) {
    V v = redis.get(key);
    String value = v.getValue();
    long timeout = v.getTimeout();
    if (v.timeout <= System.currentTimeMillis()) {
        // 异步更新后台异常执行
        threadPool.execute(new Runnable() {
            public void run() {
                String keyMutex = "mutex:" + key;
                if (redis.setnx(keyMutex, "1")) {
                    // 3 min timeout to avoid mutex holder crash
                    redis.expire(keyMutex, 3 * 60);
                    String dbValue = db.get(key);
                    redis.set(key, dbValue);
                    redis.delete(keyMutex);
                }
            }
        });
    }
    return value;
}  

(4)资源保护:
netflix的hystrix,可以做资源的隔离保护主线程池,如果把这个应用到缓存的构建也未尝不可。

四种方案对比:
? 作为一个并发量较大的互联网应用,我们的目标有3个:
? 1. 加快用户访问速度,提高用户体验。
? 2. 降低后端负载,保证系统平稳。
? 3. 保证数据“尽可能”及时更新(要不要完全一致,取决于业务,而不是技术。)
? 四种方法如下比较,还是那就话:没有最好,只有最合适。

解决方案 优点 缺点
简单分布式锁(Tim yang) 1. 思路简单2. 保证一致性 1. 代码复杂度增大2. 存在死锁的风险3. 存在线程池阻塞的风险
加另外一个过期时间(Tim yang) 1. 保证一致性 同上
不过期(本文) 1. 异步构建缓存,不会阻塞线程池 1. 不保证一致性。2. 代码复杂度增大(每个value都要维护一个timekey)。3. 占用一定的内存空间(每个value都要维护一个timekey)。
资源隔离组件hystrix(本文) 1. hystrix技术成熟,有效保证后端。2. hystrix监控强大。 1. 部分访问存在降级策略。

总结如下:

    1.  热点key + 过期时间 + 复杂的构建缓存过程 => mutex key问题
    2.  构建缓存一个线程做就可以了。
    3.  四种解决方案:没有最佳只有最合适。

总结

针对业务系统,永远都是具体情况具体分析,没有最好,只有最合适。
最后,对于缓存系统常见的缓存满了和数据丢失问题,需要根据具体业务分析,通常我们采用LRU策略处理溢出,Redis的RDB和AOF持久化策略来保证一定情况下的数据安全。

原文地址:https://www.cnblogs.com/snail-gao/p/11846312.html

时间: 2024-10-24 11:53:24

缓存穿透,缓存击穿,缓存雪崩的原理及解决方案的相关文章

缓存穿透、击穿、雪崩区别和解决方案

转自公众号:自强学堂 文中的cache指缓存,比如redis,db指数据库,比如mysql. 一.缓存的三种模式 这里主要指的是应用代码对 cache 和 db 中数据的维护方式. 1.1 应用代码同时更新 cache 和 db a)数据写入流程 b)数据读取流程 1.2 应用代码只更新 cache,cache 负责同步更新 db 此时可以将 cache 和 db 看成一个整体,db 自己维护 cache. 1.3 应用方代码更新缓存,另外将 cache 中数据定期更新到 db 类似于 Linu

缓存雪崩 Cache Avalanche 缓存穿透 Cache Penetration 缓存击穿 Hotspot Invalid

一.无处不在的缓存缓存在计算机系统是无处不在,在CPU层面有L1-L3的Cache,在Linux中有TLB加速虚拟地址和物理地址的转换,在应用层有Redis等内存数据库缓存.在浏览器有本地缓存.手机有本地文件缓存等等.可见,缓存在计算机系统中有非常重要的地位,主要作用就是提高响应速度.减少磁盘读取等,本文主要讨论在高并发系统中的缓存系统.一句话概括缓存系统在高并发系统中的地位的话,就是: 如果高并发系统是烤羊肉串,那么缓存系统就是那一撮孜然...... 二.高并发系统中的缓存 缓存系统的作用 缓

缓存穿透、并发和雪崩那些事

0 题记 缓存穿透.缓存并发和缓存雪崩是常见的由于并发量大而导致的缓存问题,本文讲解其产生原因和解决方案. 缓存穿透通常是由恶意×××或者无意造成的:缓存并发是由设计不足造成的:缓存雪崩是由缓存同时失效造成的,三种问题都比较典型,也是难以防范和解决的.本节给出通用的解决方案,以供在缓存设计的过程中参考和使用. 1 缓存穿透 缓存穿透指的是使用不存在的key进行大量的高并发查询,这导致缓存无法命中,每次请求都要穿透到后端数据库系统进行查询,使数据库压力过大,甚至使数据库服务被压死. 我们通常将空值

阿里面试Redis最常见的三个问题:缓存击穿、雪崩、穿透(带答案)

点赞再看,养成习惯,微信搜索[三太子敖丙]我所有文章都在这里,本文 GitHub https://github.com/JavaFamily 已收录,有一线大厂面试完整考点,文末有福利. 正文 上一期吊打系列我们提到了Redis的基础知识,还没看的小伙伴可以回顾一下 <吊打面试官>系列-Redis基础 那提到Redis我相信各位在面试,或者实际开发过程中对缓存雪崩,穿透,击穿也不陌生吧,就算没遇到过但是你肯定听过,那三者到底有什么区别,我们又应该怎么去防止这样的情况发生呢,我们有请下一位受害者

缓存穿透、缓存击穿、缓存雪崩及其解决方案

1.缓存穿透 缓存穿透是指查询一个一定不存在的数据,因为缓存中也无该数据的信息,则会直接去数据库层进行查询,从系统层面来看像是穿透了缓存层直接达到DB,从而称为缓存穿透,没有了缓存层的保护,这种查询一定不存在的数据对系统来说可能是一种危险,如果有人恶意用这种一定不存在的数据来频繁请求系统(准确的说是攻击系统),请求都会到达数据库层导致DB瘫痪从而引起系统故障. 解决方案 缓存穿透业内的解决方案已经比较成熟,主要常用的有以下几种: bloom filter:类似于哈希表的一种算法,用所有可能的查询

缓存穿透、缓存击穿、缓存雪崩区别和解决方案

一.缓存处理流程 前台请求,后台先从缓存中取数据,取到直接返回结果,取不到时从数据库中取,数据库取到更新缓存,并返回结果,数据库也没取到,那直接返回空结果. 二.缓存穿透 描述: 缓存穿透是指缓存和数据库中都没有的数据,而用户不断发起请求,如发起为id为“-1”的数据或id为特别大不存在的数据.这时的用户很可能是攻击者,攻击会导致数据库压力过大. 解决方案: 接口层增加校验,如用户鉴权校验,id做基础校验,id<=0的直接拦截: 从缓存取不到的数据,在数据库中也没有取到,这时也可以将key-va

缓存穿透,缓存击穿,缓存雪崩

本文链接:https://blog.csdn.net/kongtiao5/article/details/82771694 一.缓存处理流程 前台请求,后台先从缓存中取数据,取到直接返回结果,取不到时从数据库中取,数据库取到更新缓存,并返回结果,数据库也没取到,那直接返回空结果. 二.缓存穿透 描述: 缓存穿透是指缓存和数据库中都没有的数据,而用户不断发起请求,如发起为id为“-1”的数据或id为特别大不存在的数据.这时的用户很可能是攻击者,攻击会导致数据库压力过大. 解决方案: 接口层增加校验

Redis_缓存穿透、缓存击穿、缓存雪崩

一.缓存处理流程 前台请求,后台先从缓存中取数据,取到直接返回结果,取不到时从数据库中取,数据库取到更新缓存,并返回结果,数据库也没取到,那直接返回空结果. 二.缓存穿透 描述: 缓存穿透是指缓存和数据库中都没有的数据,而用户不断发起请求,如发起为id为“-1”的数据或id为特别大不存在的数据.这时的用户很可能是攻击者,攻击会导致数据库压力过大. 解决方案: 1. 接口层增加校验 , 或缓存空对象. 将 null 变成一个值. 也可以采用一个更为简单粗暴的方法,如果一个查询返回的数据为空(不管是

缓存雪崩、缓存击穿、缓存穿透

1.缓存雪崩 通常我们在数据量请求大或者热点数据都会做缓存,通常情况缓存的数据是通过定时任务刷新,或者查询不到后,通过数据库查询后更新的,定时任务刷新的场景就会有问题,因为所有的key会在同一时间失效,那么在秒杀的场景中,如果缓存失效,大量的请求全部落入数据库,数据库必然是扛不住的,可能还没收到报警,实际上数据库已经宕机了 应对这种场景的处理方法是:1)在批量往redis中存数据的时候,把每个key的失效时间都加一个随机值,这样可以保证不会在同一时间大面积失效.2)电商应用目前使用redis都是