[期末复习]《语义网与知识图谱》期末复习(二)

《语义网与知识图谱》期末复习(二)

这次老师发了个最终版的pdf帮助我们复习,那我就重来。

基本

  1. 语义web的组成:语义web信息的开放标准、从web描述信息中进一步获取语义的方法。
  2. 本体:本体是一种形式化的,对共享概念体系的明确而又详细的说明。提供一种共享词表。核心是分类体系。
  3. RDF使用有向图作为数据类型。

RDF-Literals

即文本或者说是字符串,在rdf图种用方框表示。

RDF表示

一个三元组包含

  1. 主语:URIs和空节点
  2. 谓语:URIs(通常被成为属性)
  3. 宾语:URIs、空节点或者文字

Turtle

Turtle需要注意:

  1. URIs放在<>中
  2. 文字用双引号
  3. 三元组用.结束
  4. 忽略空格
  5. @prefix描述前缀。eg. @prefix ex: <http://xx.com>.
  6. 三元组的主语一样可以简化缩写。

XML-based RDF

<rdf:description rdf:about="xx">
</rdf:description>

利用rdf:description表示是一个节点,rdf:about表述节点名或者说是URI

通过xml 的包含结构来描述主谓关系。

literal有两种写法

  1. 直接写
  2. 省略写法.eg: <ex:name="aoru">等价于<ex:name>aoru</ex:name>

空节点在xml中有下列的写法:

  1. 指定rdf:nodeId,然后再下面引用
  2. 缩写,利用rdf:parseType = "Resource"表示空节点

空节点再turtle中对应为:

  1. _ 用下划线表示空节点前缀
  2. 或者下面缩写,[]用方括号表示空节点,在方括号中写谓语和宾语。

RDFS

在类和实例上对RDF拓展。

A rdf:type B 表示A是B的实例。

隐式推理:

  1. a type A, A subclassOf B,则a type B
  2. A subclassOf B,B subClassOf C,则A subClassOf C。
  3. A subclassOf B,B subClassOf A,则A、B等价。

属性约束:

rdfs:domain定义域

rdfs:range值域

语义

主要考虑语义概念的逻辑维度。

逻辑语义包括:模型论和证明论。

OWL

基本元素:

Class、rdfs:subClassOf

所有的类都继承自owl:Thing

定义一个类

<owl:Class rdf:ID="A">
</owl:Class>

定义一个实例化个体

<A rdf:ID="a">
</A>

属性:

<owl:ObjectProperty rdf:ID="makeFrom">
    <rdf:range rdf:resource="a"></rdf:range>
    <rdf:domain rdf:resource="b"></rdf:domain>
</owl:ObjectProperty>

本体映射:

<owl:Class rdf:ID="a">
    <owl:intersectionOf rdf:parseType="Collection">
        <rdf:Class rdf:ID="b"></rdf:Class>
        <rdf:Class rdf:ID="c"></rdf:Class>
    </owl:intersectionOf>
</owl:Class>

owl:intersectionOf 交运算

owl:unionOf 并运算

owl:disjointOf 不相交类

描述逻辑

基本概念:个体(URIs)、类(URIs)、属性(URIs)。
\[
Person(mary) 表示mary是person\\Woman \subseteq Person 表示woman包含于person\\hasWife(A,B)表示A的wife是B\\]

Abox:上面那种is关系,类与对象的关系属于Abox。

Tbox:上面那种类与类之间的关系。比如包含关系。

\[
概念全集:\top\\概念空集:\bot\\属性全集:U
\]
如何利用DL构造一个类.
\[
利用Woman和Parent构造Mother类。\\\forall x \; Woman(x) \leftrightarrow Parent(x) \cap Woman(x)
\]

一个ALC的例子:

Happy Father概念
\[
Man\; \cap \exist \; hasChild.Male\\\cap \exist hasChild.Famale\\\cap \forall hasChild.(Doctor \cup Lawyer)
\]
存在描述符描述的是属性值,任意描述符描述的是拥有属性的对象。

这里存在描述符加上属性表示至少有一个属性值,那么第一行就可以翻译成至少有一个男孩子(儿子),第二行是至少有一个女孩子(女儿),最后一行任意描述符描述有孩子的对象,这个对象是doctor或lawyer。

SROIQ(D)

SR = ALC + role chains

I 可逆

Q 基数限制

D 数据类型

可判定性:如果一个问题的结果最终能够收敛到一个稳定的值,不管能不能直接得到解,都称这个问题是可判定的。

半判定:算法在有限时间能解决的问题是半判定问题。

存在同时是半判定和非判定的问题。

一种描述逻辑如果其”蕴含公理“是可判定的,则这种描述逻辑是可判定的。

大多数的描述逻辑是可判定的,可判定行是判断一种”好的“描述逻辑标准。

什么是知识图谱

学术角度上讲,知识图谱本质上是一种揭示实体之间关系的语义网络,可以对现实世界的事物及其相互关系进行形式化地描述。

知识图谱的”图谱“不是图像而是图模型。

知识图谱不仅关心知识如何用图表达,还关注图谱如何获取、融合、更新和推理等问题。

知识图谱的技术流程

数据->知识表示->知识获取->知识融合->知识推理->知识检索->知识分析->应用

知识图谱与数据库

  1. RDF三元组库,使用SPARQL查询
  2. 图数据库,使用Cypher(开源图数据库Neo4j)、Gremlin、PGOL和G-Core

知识图谱与推荐系统

推荐系统的问题:冷启动,最开始没得数据推荐。

使用知识图谱解决:知识图谱可以提供先验知识,帮助缓解数据稀疏问题,提高模型性能。

推荐系统:

  1. 基于协同过滤
  2. 基于内容

引入知识图谱:

  1. 基于知识图谱中元路径的推荐模型
  2. 基于概率逻辑程序的推荐模型
  3. 基于知识图谱表示学习技术的推荐模型

知识图谱小结

知识图谱的终极目标:将非结构、无显式关联的粗糙数据逐步提炼为结构化、高度关联的高质量知识。

知识图谱涉及:知识表示、关系抽取、图数据存储、数据融合、推理补全、语义搜索、知识问答、自动推理、知识驱动等。

关系型数据库:不强调语义逻辑、数据量大、实用

传统知识库:以逻辑为基础,强调语义、数据量小、不实用

知识图谱:弱语义,弱逻辑、大量实例、实用

知识表示

知识表示:用易于计算机处理的方式来描述人脑的知识。

数据与知识的区别:知识可以推理。

知识图谱是知识表示的一种方法。

霍恩子句、霍恩逻辑

霍恩子句:文字的析取,最多待一个肯定文字。也就是说,霍恩子句中最多只能存在一个肯定的句子,其他皆为否定。

框架系统

框架系统的基本思想:认为人们对现实世界中事物的认识都是以一种类似于框架的结构存储在记忆中。当面临新事物的时候,就从记忆中找出一个合适的框架,并根据实际情况对细节加以修改、补充,从而形成对当前事物的认识。

框架:是一种描述对象的属性的数据结构。

一个框架系统由若干个槽组成。每个槽又分为若干侧面/

槽:描述对象某一方面的属性。

侧面:描述属性的一个方面。

SPARQL

是rdf数据库的查询语言。

实用三元组形式查询。

例子:

prefix exp:http://aa.com
SELECT ?student ?email
WHERE {
    ?student exp:studies exp:English.
    OPTIONAL {
        ?student foaf:mbox ?email.
        FILTER(?age >5).
    }
}
  1. 变量前面要加?
  2. OPTIONAL是带选项的查询,表示里面的选项是查询可选的。
  3. FILTER是过滤算子,如果OPTIONAL满足,则就要过滤掉age大于5的结果。

OPTIONAL:可选算子 OPTIONAL{XXX}

FILTER:过滤算子 FILTER()

UNION:并算子 UNION{XXX}

知识图谱嵌入

嵌入就是映射到高维的向量空间,知识谱图的嵌入一般可以通过深度学习等方法把系欸但转化为向量,然后映射到高维空间处理。

知识图谱中可以用类比推理做知识图谱的补全。

原文地址:https://www.cnblogs.com/aoru45/p/11788583.html

时间: 2024-10-22 15:33:45

[期末复习]《语义网与知识图谱》期末复习(二)的相关文章

[期末复习]《语义网与知识图谱》期末复习(一)

上海大学<语义网与知识图谱>期末复习(一) 前言 这个课..不太喜欢.但是不能挂呀!平常的话感觉很难听得进去,因为没有任何先导课,直接上这个确实有点难受,那个老师感觉得到他想表达很多东西,但是有些东西确实表达不够明确,每节课听得都迷迷糊糊,毕竟是一个前沿的东西,如果不是一线战斗的老师,估计很多概念都很难讲清楚吧. 以上均胡扯,万一我有哪天真的用上了呢?(见鬼了). 下面复习主要集中在可能的考点复习上,均个人感觉哪里可能出题等等. 之前总结过rdf/rdfs.turtle和owl语法,所以这里前

观点 - 论语义网和知识图谱的区别

Q:语义网和知识图谱有区别吗?如果有,区别何在? 当下关于知识图谱的讨论越来越热烈,但是经常听到有人用"语义网"来代替"知识图谱",或者说认为知识图谱本质上就是语义网.这种想法不无道理,我也聚德这两者很大程度上是相通的,甚至知识图谱本来本就脱胎于语义网(Google收购Freebase改造后推出Google Knowledge Graph).然而,我个人认为语义网和知识图谱还是有区别的. 首先从两者的源流来看. 语义网是Tim Berners Lee 在1998年提

[NLP] 语义网络与知识图谱入门(二)

语义网络与知识图谱入门(二) OWL 本体声明 owl用owl:Ontology来声明一个本体.rdf:about属性为本体提供一个名称或引用.根据标准,当rdf:about属性的值为""时,本体的名称是owl: Ontology元素的基准URI. <owl:Ontology rdf:about=""> <rdfs:comment>An example OWL ontology</rdfs:comment> <owl:pri

典型的知识库/链接数据/知识图谱项目

典型的知识库/链接数据/知识图谱项目 2016年12月27日 Huajun 留下评论 从人工智能的概念被提出开始,构建大规模的知识库一直都是人工智能.自然语言理解等领域的核心任务之一.下面首先分别介绍了早期的知识库项目和以互联网为基础构建的新一代知识库项目.并单独介绍了典型的中文知识图谱项目. 1. 早期的知识库项目 Cyc  :  Cyc是持续时间最久,影响范围较广,争议也较多的知识库项目.Cyc是在1984年由Douglas Lenat开始创建.最初的目标是要建立人类最大的常识知识库.典型的

知识图谱文献综述(第一章)

既然决定了以知识图谱作为研究方向,文献综述是必不可少的. 本文主要总结<知识图谱发展报告(2018)-中国中文信息学会> 1. 知识图谱的研究目标与意义 (略) 2. 知识工程的发展历程 3. 知识图谱技术 人们通过概念掌握对客观世界的理解,概念是对客观世界事物的抽象,是将 人们对世界认知联系在一起的纽带.知识图谱以结构化的形式描述客观世界中概 念.实体及其关系.实体是客观世界中的事物,概念是对具有相同属性的事物的 概括和抽象.本体是知识图谱的知识表示基础,可以形式化表示为,O={C,H, P

知识图谱相关会议之观后感分享与学习总结

2015年6月27日,清华大学FIT楼多功能报告厅,中国中文信息学会青年工委系列学术活动--知识图谱研究青年学者研讨会. 由于我毕设是与知识图谱.实体消歧.实体对齐.知识集成相关的,所以去听了这个报告:同时报告中采用手写笔记,所以没有相应的PPT和原图(遗憾),很多图是我自己画的找的,可能存在遗漏或表述不清的地方,请海涵~很多算法还在学习研究中,最后希望文章对大家有所帮助吧!感谢那些分享的牛人,知识版权归他们所有. 目录: 一.面向知识图谱的信息抽取技术 二.常识知识在结构化知识库构建中的应用

语义网—RDFS

首先推荐介绍语义网基础知识书籍,<语义网技术体系> 瞿裕忠,胡伟,程龚. 2015 RDFS(Resource Description Framework Schema)是在RDF的基础上,提供了一个以"http://www.w3.org/2000/01/rdf-schema#"为命名空间的词汇表,作为用户描述特定领域中类和属性的标准.与XML Schema和XML的关系不同,RDFS只是一组特别的RDF词汇,定义了RDF数据中使用的词汇及其语义. 在RDF中,类(Clas

ADL100(1)-liukang-面向知识图谱的问答系统

1. 问答系统 定义: 根据问题(query)直接搜索出答案,而不是文档 2. 基于知识图谱的问答系统 分类: 1)语义解析(Semantic Parsing): 问句转化为形式化查询语句,结构化查询得到答案 2)语义检索(Answer Retrieval):简单搜索得到候选答案,利用问题和候选答案做相似度匹配 3. 知识问答的主要方法 1)符号语义解析 2)基于语义检索的知识图谱问答 3)神经符号计算(就是用上了神经网络,做符号生成呀,做匹配呀) 4. 语义表示 1)lambda-演算逻辑表达

搜索引擎和知识图谱那些事 (上).基础篇

这是一篇基础性文章,主要介绍搜索引擎和知识图谱的一些原理.发展经历和应用等知识.希望文章对你有所帮助~如果有错误或不足之处,还请海涵.(参考资料见后) 一. 搜索引擎 (一).搜索引擎的四个时代 根据张俊林大神的<这就是搜索引擎>这本书中描述(推荐大家阅读),搜索引擎从采取的技术划分为4个时代: 1.史前时代:分类目录的一代 这个时代成为"导航时代",Yahoo和国内hao123是这个时代的代表.通过人工搜集整理,把属于各个类别的高质量网站或网页分类,用户通过分级目录来查找