P3959 宝藏
题目描述
参与考古挖掘的小明得到了一份藏宝图,藏宝图上标出了 n 个深埋在地下的宝藏屋, 也给出了这 n 个宝藏屋之间可供开发的m 条道路和它们的长度。
小明决心亲自前往挖掘所有宝藏屋中的宝藏。但是,每个宝藏屋距离地面都很远, 也就是说,从地面打通一条到某个宝藏屋的道路是很困难的,而开发宝藏屋之间的道路 则相对容易很多。
小明的决心感动了考古挖掘的赞助商,赞助商决定免费赞助他打通一条从地面到某 个宝藏屋的通道,通往哪个宝藏屋则由小明来决定。
在此基础上,小明还需要考虑如何开凿宝藏屋之间的道路。已经开凿出的道路可以 任意通行不消耗代价。每开凿出一条新道路,小明就会与考古队一起挖掘出由该条道路 所能到达的宝藏屋的宝藏。另外,小明不想开发无用道路,即两个已经被挖掘过的宝藏 屋之间的道路无需再开发。
新开发一条道路的代价是:L × K
L代表这条道路的长度,K代表从赞助商帮你打通的宝藏屋到这条道路起点的宝藏屋所经过的 宝藏屋的数量(包括赞助商帮你打通的宝藏屋和这条道路起点的宝藏屋) 。
请你编写程序为小明选定由赞助商打通的宝藏屋和之后开凿的道路,使得工程总代 价最小,并输出这个最小值。
输入格式
第一行两个用空格分离的正整数 n,m,代表宝藏屋的个数和道路数。
接下来 m 行,每行三个用空格分离的正整数,分别是由一条道路连接的两个宝藏 屋的编号(编号为 1−n),和这条道路的长度 v。
输出格式
一个正整数,表示最小的总代价。
这道题和 灰原 一起想了一下午还是没有想出来(我们果然还是太菜了),去某谷看了这篇题解,觉得写的很棒也很巧,想记录一下这道题来加深一下记忆。
我们已经想到的:1.用一个数来表示走过的点的集合
2.往这个集合里面加一个点时,枚举此集合里的所有点,取代价最小的连边
卡住我们的点是:1.我们无法证明 当往一个集合里新添一个点的时候,只用在原来的连边方式上新连一条边即为最优解
2.无法仅通过一个集合来计算出代价,因为代价中含有边的权值和两点之间的距离(或者说是在树上的两点之间的高度差)
题解比我们多想的是:1.
原文地址:https://www.cnblogs.com/Bn-ff/p/12160569.html