信号期中纠错
- 线性时不变离散系统稳定,其单位样值响应\(h(n)\)必须满足
\[
\sum_{n=-\infty}^{\infty}|h(n)|<\infty
\] - 线性时不变离散系统因果,其单位样值响应\(h(n)\)必须满足
\[
h(n)=h(n)u(n)
\]\[
\begin{align}f(t)*\delta(t-t_0)&=f(t_0)\notag\\f(t)\cdot\delta(t-t_0)&=f(t_0)\delta(t-t_0)\notag\end{align}
\] - \(f(t)\)的带宽为\(W\),则\(f(t)\sin(\omega_0t+\frac{\pi}{4})\)的带宽为
\[
2W
\] - 序列\(\delta(\frac{n}{2})\)可用\(\delta(n)\)表示为
\[
\delta(n)
\] - 某线性时不变离散系统的单位样值响应为\(h(n)\),当激励为\(u(n)-u(n-2)\)时,系统的输出为
\[
h(n)+h(n-1)
\] - 求下列序列的最小正周期
- \(\cos(\frac{\pi}{3}n)+\cos(\frac{5\pi}{3}n)\)
\[
\begin{align}
T_1&=\frac{2\pi}{\frac{\pi}{3}}=6\notag\T_2&=\frac{2\pi}{\frac{5\pi}{3}}=\frac{6}{5}\notag
\end{align}
\]
所以周期是两者最小公倍数,为6. - \(\cos(\frac{\pi}{3}n)\cos(\frac{5\pi}{3}n)\)
需要使用积化和差
\[
\cos(\frac{\pi}{3}n)\cos(\frac{5\pi}{3}n)=\frac{1}{2}[\cos(2\pi)+\cos(-\frac{4\pi}{3})]
\]
还需要对两者分别求周期
\[
\begin{align}
T_1&=\frac{2\pi}{2\pi}=1\notag\T_2&=\frac{2\pi}{-\frac{4\pi}{3}}=-\frac{3}{2}\notag
\end{align}
\]
最小公倍数为\(3\),所以周期为\(3\).
- \(\cos(\frac{\pi}{3}n)+\cos(\frac{5\pi}{3}n)\)
- 已知\(f(t)=e^{-2t}[u(t)-u(t-4)]\),求其傅氏变换
\[
f(t)=e^{-2t}u(t)-e^{-8}\cdot e^{2(t-4)}u(t-4)\leftrightarrow \frac{1}{2+j\omega}-e^{-8}\frac{1}{2+j\omega}e^{-j\omega4}
\]
将信号拆分,凑成了可以使用时移特性的形式. - 求\(u(2t-4)\)得傅氏变换
根据尺度变换性质可知
\[
f(at+b)\leftrightarrow \frac{1}{|a|}e^{j\omega(\frac{b}{a})}F(\frac{\omega}{a})
\]
将函数代入,可得
\[
u(2t-4)\leftrightarrow \frac{1}{2}e^{-j\omega(\frac{-4}{2})}F(\frac{\omega}{2})
\]
又因为
\[
F(\omega)=\pi\delta(\omega)+\frac{1}{j\omega}
\]
所以
\[
\frac{1}{2}e^{-j\omega(\frac{-4}{2})}F(\frac{\omega}{2})=\frac{1}{2}e^{-j\omega(\frac{-4}{2})}[\pi\delta(\frac{\omega}{2})+\frac{1}{j\frac{\omega}{2}}]\tag{*}
\]
根据冲激函数的性质
\[
\delta(at)=\frac{1}{|a|}\delta(t)
\]
则\((*)\)式可以写为
\[
\frac{1}{2}e^{-j\omega(\frac{-4}{2})}2\pi\delta(\omega)+\frac{1}{2}e^{-j\omega(\frac{-4}{2})}\frac{1}{j\frac{\omega}{2}}=\pi\delta(\omega)+\frac{e^{-j\omega 2}}{j\omega}
\] - 求信号\((1-t)\frac{d}{dt}[e^{-2t}\delta(t)]\)的傅氏变换
\[
\begin{align}
(1-t)\frac{d}{dt}[e^{-2t}\delta(t)]&=(1-t)\delta^{'}(t)\notag\&=\delta^{'}(t)-t\delta^{'}(t)\notag
\end{align}
\]
由于
\[
\delta^{'}(t)\leftrightarrow j\omega
\]
以及频域微分特性
\[
tf(t)\leftrightarrow j\frac{d}{d\omega}F(\omega)
\]
可得
\[
\begin{align}\delta^{'}(t)-t\delta^{'}(t)&=j\omega-[j(\frac{d}{d\omega}j\omega)]\notag\\&=j\omega+1\notag\end{align}
\] - 求信号\(e^{-(2+j5)t}u(t)\)的傅氏变换
\[
\begin{align}e^{-(2+j5)t}u(t)&=e^{-2t}u(t)e^{-j5t}\notag\\&=\frac{1}{2+j(\omega+5)}\notag\end{align}
\]
? 此处用了单边指数的傅氏变换公式.
原文地址:https://www.cnblogs.com/Clouds42/p/11809602.html