FFT加速高精度乘法

dalao精讲原文  https://blog.csdn.net/Flag_z/article/details/99163939

#include<bits/stdc++.h>
using namespace std;
//complex是stl自带的定义复数的容器
typedef complex<double> cp;
#define N 2097153
//pie表示圆周率π
const double pie=acos(-1);
int n;
cp a[N],b[N];
int rev[N],ans[N];
char s1[N],s2[N];
//读入优化
int read(){
    int sum=0,f=1;
    char ch=getchar();
    while(ch>‘9‘||ch<‘0‘){if(ch==‘-‘)f=-1;ch=getchar();}
    while(ch>=‘0‘&&ch<=‘9‘){sum=(sum<<3)+(sum<<1)+ch-‘0‘;ch=getchar();}
    return sum*f;
}
//初始化每个位置最终到达的位置
{
    int len=1<<k;
    for(int i=0;i<len;i++)
    rev[i]=(rev[i>>1]>>1)|((i&1)<<(k-1));
}
//a表示要操作的系数,n表示序列长度
//若flag为1,则表示FFT,为-1则为IFFT(需要求倒数)
void fft(cp *a,int n,int flag){
    for(int i=0;i<n;i++)
    {
     //i小于rev[i]时才交换,防止同一个元素交换两次,回到它原来的位置。
      if(i<rev[i])swap(a[i],a[rev[i]]);
    }
    for(int h=1;h<n;h*=2)//h是准备合并序列的长度的二分之一
    {
    cp wn=exp(cp(0,flag*pie/h));//求单位根w_n^1
     for(int j=0;j<n;j+=h*2)//j表示合并到了哪一位
     {
      cp w(1,0);
       for(int k=j;k<j+h;k++)//只扫左半部分,得到右半部分的答案
       {
         cp x=a[k];
         cp y=w*a[k+h];
         a[k]=x+y;  //这两步是蝴蝶变换
         a[k+h]=x-y;
         w*=wn; //求w_n^k
       }
     }
     }
     //判断是否是FFT还是IFFT
     if(flag==-1)
     for(int i=0;i<n;i++)
     a[i]/=n;
}
int main(){
    n=read();
    scanf("%s%s",s1,s2);
    //读入的数的每一位看成多项式的一项,保存在复数的实部
    for(int i=0;i<n;i++)a[i]=(double)(s1[n-i-1]-‘0‘);
    for(int i=0;i<n;i++)b[i]=(double)(s2[n-i-1]-‘0‘);
    //k表示转化成二进制的位数
    int k=1,s=2;
    while((1<<k)<2*n-1)k++,s<<=1;
    init(k);
    //FFT 把a的系数表示转化为点值表示
    fft(a,s,1);
    //FFT 把b的系数表示转化为点值表示
    fft(b,s,1);
    //FFT 两个多项式的点值表示相乘
    for(int i=0;i<s;i++)
    a[i]*=b[i];
    //IFFT 把这个点值表示转化为系数表示
    fft(a,s,-1);
    //保存答案的每一位(注意进位)
    for(int i=0;i<s;i++)
    {
    //取实数四舍五入,此时虚数部分应当为0或由于浮点误差接近0
    ans[i]+=(int)(a[i].real()+0.5);
    ans[i+1]+=ans[i]/10;
    ans[i]%=10;
    }
    while(!ans[s]&&s>-1)s--;
    if(s==-1)printf("0");
    else
    for(int i=s;i>=0;i--)
    printf("%d",ans[i]);
    return 0;
}

原文地址:https://www.cnblogs.com/aprincess/p/11631989.html

时间: 2024-10-18 04:44:06

FFT加速高精度乘法的相关文章

HDU1402 FFT高精度乘法模板题

#include<bits/stdc++.h> using namespace std; //HDU 1402 求高精度乘法 const double PI = acos(-1.0); //复数结构体 struct Complex { double x,y;//实部和虚部x+yi Complex(double _x = 0.0,double _y = 0.0) { x = _x; y = _y; } Complex operator -(const Complex &b)const {

高精度乘法程序

对于超过20位的数的乘法问题,我们无法使用普通的方法!!!即使是longlong也会超出范围的!像这样的数,我们只能使用高精度的知识利用数组的方法解决问题!对于高精度乘法的问题,其实思路和高精度加法的思路差不多,都需要使用字符数组来存放每次算完的结果!        1  2  3        *4  5  6    ________________      12  15  18   8  10  124  5   6  _____________________4 13   28   27

POJ 1306 Combinations 高精度乘法

题目大意:给出mn,让你求C(m,n). 思路:公式都给你了,就100,暴力就可以关键还是高精度.如果按照算法"它让你怎么做你就怎么做",那么很显然你需要写一个高精度除法.然而可以证明,这个除法是不会产生余数的.所以我们可以数论分析,然后避免高精度除法. 方法就是暴力求每个数的质因数,然后把被除数和除数相同的质因数消去,最后除数肯定会被消没.这样只要做高精度乘法就可以了. CODE: #include <cstdio> #include <cstring> #i

poj1001(高精度乘法)

1.题目表述 Exponentiation Time Limit: 500MS   Memory Limit: 10000K Total Submissions: 135893   Accepted: 33256 Description Problems involving the computation of exact values of very large magnitude and precision are common. For example, the computation o

真真真&#183;?高精度乘法!!!!!

RX-0奉上哈哈哈哈哈哈哈哈哈哈哈哈哈™™™ 先奉上真真真·高精度乘法源代码: 高精度乘法 RX-0制作最后修改:2016年7月6日#include<stdio.h>#include<string.h>#include<math.h>char s[10000],b;int a[10000];int c[10000];int main(){ int x,l=0,y=1,i,j,m,l1=0; long long s1=0; //freopen("hp.in&qu

[转]高精度乘法计算

转载自: Daywei 高精度乘法计算 高精度乘法计算基础 1.高精度浮点运算方法 高精度浮点(Floating Point,FP)运算可以转换成整数型运算.由于高精度浮点数可以看成是由整数部分(Integer Part,IP)与小数部分(Decimal Part,DP)的组合,因此其乘法可以看成以下3种运算的组合,即整数x整数(IxI).整数x小数(IxD)和小数x小数(DxD).用表达式表示, 则FP1*FP2=IP1*IP2+(IP1*DP2+IP2*DP1)+DP1*DP2 (1)对于I

[vijos P1040] 高精度乘法

如果这次noip没考好,完全是因为从7月29日之后就没有再写过程序了.说起来,真是一个泪流满面的事实… 那这样一个弱智题练手恢复代码能力,竟然还花了我两个晚上(当然不是两整个晚上…) 第一天TLE了,好在我机智,一看到解题里说要压位就自动脑补出压位了. 代码风格非常诡异,弱智题竟然写到2KB我也是醉了. program vijos_p1040; const maxn=10020; var a,b,aa,bb:array[1..maxn] of integer; c:array[1..2*maxn

【PKU1001】Exponentiation(高精度乘法)

Exponentiation Time Limit: 500MS   Memory Limit: 10000K Total Submissions: 145642   Accepted: 35529 Description Problems involving the computation of exact values of very large magnitude and precision are common. For example, the computation of the n

HDU 1042.N!【高精度乘法】【8月24】

N! Problem Description Given an integer N(0 ≤ N ≤ 10000), your task is to calculate N! Input One N in one line, process to the end of file. Output For each N, output N! in one line. Sample Input 1 2 3 Sample Output 1 2 6 高精度乘法.数组存,每一位存5位数,不然会严重超时.另外,