-------------------------并查集-------------------------
并查集是一种特殊的树,由孩子指向父亲
用于解决连接问题和路径问题:
判断网络中节点的连接状态
将每一个元素,看做是一个节点,将a和b合并成一个集合的时候,只需要让a所在的根节点指向b所在的根节点即可,而查询两个元素是否在一个集合中,只需要找到各自的根节点,如果两个根节点是同一个根节点,则说明是在同一个集合中:这样查询较快,合并也较快。
并查集接口设计如下:
package unionFind; public interface UF { int getSize(); boolean isConnected(int p, int q); void unionElements(int p, int q); }
quik find实现如下:
package unionFind; // 我们的第一版Union-Find public class UnionFind1 implements UF { private int[] id; // 我们的第一版Union-Find本质就是一个数组 public UnionFind1(int size) { id = new int[size]; // 初始化, 每一个id[i]指向自己, 没有合并的元素 for (int i = 0; i < size; i++) id[i] = i; } @Override public int getSize(){ return id.length; } // 查找元素p所对应的集合编号 // O(1)复杂度 private int find(int p) { if(p < 0 || p >= id.length) throw new IllegalArgumentException("p is out of bound."); return id[p]; } // 查看元素p和元素q是否所属一个集合 // O(1)复杂度 @Override public boolean isConnected(int p, int q) { return find(p) == find(q); } // 合并元素p和元素q所属的集合 // O(n) 复杂度 @Override public void unionElements(int p, int q) { int pID = find(p); int qID = find(q); if (pID == qID) return; // 合并过程需要遍历一遍所有元素, 将两个元素的所属集合编号合并 for (int i = 0; i < id.length; i++) if (id[i] == pID) id[i] = qID; } }
quik union实现如下:
package unionFind; // 我们的第二版Union-Find public class UnionFind2 implements UF { // 我们的第二版Union-Find, 使用一个数组构建一棵指向父节点的树 // parent[i]表示第一个元素所指向的父节点 private int[] parent; // 构造函数 public UnionFind2(int size){ parent = new int[size]; // 初始化, 每一个parent[i]指向自己, 表示每一个元素自己自成一个集合 for( int i = 0 ; i < size ; i ++ ) parent[i] = i; } @Override public int getSize(){ return parent.length; } // 查找过程, 查找元素p所对应的集合编号 // O(h)复杂度, h为树的高度 private int find(int p){ if(p < 0 || p >= parent.length) throw new IllegalArgumentException("p is out of bound."); // 不断去查询自己的父亲节点, 直到到达根节点 // 根节点的特点: parent[p] == p while(p != parent[p]) p = parent[p]; return p; } // 查看元素p和元素q是否所属一个集合 // O(h)复杂度, h为树的高度 @Override public boolean isConnected( int p , int q ){ return find(p) == find(q); } // 合并元素p和元素q所属的集合 // O(h)复杂度, h为树的高度 @Override public void unionElements(int p, int q){ int pRoot = find(p); int qRoot = find(q); if( pRoot == qRoot ) return; parent[pRoot] = qRoot; } }
基于size的优化:让高度小的树的根节点指向高度比较高的树的根节点,这样做的好处是形成的树的高度不会过高,在寻找某个节点的根节点的时候效率也会较快,如果不进行高度判断,最坏的情况有可能形成的是单链表
package unionFind; // 我们的第三版Union-Find public class UnionFind3 implements UF{ private int[] parent; // parent[i]表示第一个元素所指向的父节点 private int[] sz; // sz[i]表示以i为根的集合中元素个数 // 构造函数 public UnionFind3(int size){ parent = new int[size]; sz = new int[size]; // 初始化, 每一个parent[i]指向自己, 表示每一个元素自己自成一个集合 for(int i = 0 ; i < size ; i ++){ parent[i] = i; sz[i] = 1; } } @Override public int getSize(){ return parent.length; } // 查找过程, 查找元素p所对应的集合编号 // O(h)复杂度, h为树的高度 private int find(int p){ if(p < 0 || p >= parent.length) throw new IllegalArgumentException("p is out of bound."); // 不断去查询自己的父亲节点, 直到到达根节点 // 根节点的特点: parent[p] == p while( p != parent[p] ) p = parent[p]; return p; } // 查看元素p和元素q是否所属一个集合 // O(h)复杂度, h为树的高度 @Override public boolean isConnected( int p , int q ){ return find(p) == find(q); } // 合并元素p和元素q所属的集合 // O(h)复杂度, h为树的高度 @Override public void unionElements(int p, int q){ int pRoot = find(p); int qRoot = find(q); if(pRoot == qRoot) return; // 根据两个元素所在树的元素个数不同判断合并方向 // 将元素个数少的集合合并到元素个数多的集合上 if(sz[pRoot] < sz[qRoot]){ parent[pRoot] = qRoot; sz[qRoot] += sz[pRoot]; } else{ // sz[qRoot] <= sz[pRoot] parent[qRoot] = pRoot; sz[pRoot] += sz[qRoot]; } } }
基于rank的优化:深度比较低的那颗树向深度比较高的那颗树合并
package unionFind; // 我们的第四版Union-Find public class UnionFind4 implements UF { private int[] rank; // rank[i]表示以i为根的集合所表示的树的层数 private int[] parent; // parent[i]表示第i个元素所指向的父节点 // 构造函数 public UnionFind4(int size){ rank = new int[size]; parent = new int[size]; // 初始化, 每一个parent[i]指向自己, 表示每一个元素自己自成一个集合 for( int i = 0 ; i < size ; i ++ ){ parent[i] = i; rank[i] = 1; } } @Override public int getSize(){ return parent.length; } // 查找过程, 查找元素p所对应的集合编号 // O(h)复杂度, h为树的高度 private int find(int p){ if(p < 0 || p >= parent.length) throw new IllegalArgumentException("p is out of bound."); // 不断去查询自己的父亲节点, 直到到达根节点 // 根节点的特点: parent[p] == p while(p != parent[p]) p = parent[p]; return p; } // 查看元素p和元素q是否所属一个集合 // O(h)复杂度, h为树的高度 @Override public boolean isConnected( int p , int q ){ return find(p) == find(q); } // 合并元素p和元素q所属的集合 // O(h)复杂度, h为树的高度 @Override public void unionElements(int p, int q){ int pRoot = find(p); int qRoot = find(q); if( pRoot == qRoot ) return; // 根据两个元素所在树的rank不同判断合并方向 // 将rank低的集合合并到rank高的集合上 if(rank[pRoot] < rank[qRoot]) parent[pRoot] = qRoot; else if(rank[qRoot] < rank[pRoot]) parent[qRoot] = pRoot; else{ // rank[pRoot] == rank[qRoot] parent[pRoot] = qRoot; rank[qRoot] += 1; // 此时, 我维护rank的值 } } }
路径压缩优化:parent[p]=parent[parent[p]],解下图中的节点4找根节点的时候,会由下图中的图1变为图2的形状;而如果再次寻找节点4和节点3的时候,会再次由下图中的图2变为图3的关系。这样很方便的降低了树的高度。
改变树的高度的时候,却没有改变rank值,是否合理?是合理的,因为rank实际并不代表树的高度,真正的解释是排名:即上边的树的排名(rank)值大于下边的树的排名,这样的一个规律还是一直存在的。
package unionFind; // 我们的第五版Union-Find public class UnionFind5 implements UF { // rank[i]表示以i为根的集合所表示的树的层数 // 在后续的代码中, 我们并不会维护rank的语意, 也就是rank的值在路径压缩的过程中, 有可能不在是树的层数值 // 这也是我们的rank不叫height或者depth的原因, 他只是作为比较的一个标准 private int[] rank; private int[] parent; // parent[i]表示第i个元素所指向的父节点 // 构造函数 public UnionFind5(int size){ rank = new int[size]; parent = new int[size]; // 初始化, 每一个parent[i]指向自己, 表示每一个元素自己自成一个集合 for( int i = 0 ; i < size ; i ++ ){ parent[i] = i; rank[i] = 1; } } @Override public int getSize(){ return parent.length; } // 查找过程, 查找元素p所对应的集合编号 // O(h)复杂度, h为树的高度 private int find(int p){ if(p < 0 || p >= parent.length) throw new IllegalArgumentException("p is out of bound."); while( p != parent[p] ){ parent[p] = parent[parent[p]]; p = parent[p]; } return p; } // 查看元素p和元素q是否所属一个集合 // O(h)复杂度, h为树的高度 @Override public boolean isConnected( int p , int q ){ return find(p) == find(q); } // 合并元素p和元素q所属的集合 // O(h)复杂度, h为树的高度 @Override public void unionElements(int p, int q){ int pRoot = find(p); int qRoot = find(q); if( pRoot == qRoot ) return; // 根据两个元素所在树的rank不同判断合并方向 // 将rank低的集合合并到rank高的集合上 if( rank[pRoot] < rank[qRoot] ) parent[pRoot] = qRoot; else if( rank[qRoot] < rank[pRoot]) parent[qRoot] = pRoot; else{ // rank[pRoot] == rank[qRoot] parent[pRoot] = qRoot; rank[qRoot] += 1; // 此时, 我维护rank的值 } } }
递归调用:让该节点到根节点的路径上的所有节点都指向根节点。其中改动为find方法中的while循环改为递归算法
if(p != parent[p])
parent[p] = find(parent[p]);
return parent[p];
经测试,使用递归的方式效率还要慢于上一版的效率
package unionFind; // 我们的第六版Union-Find public class UnionFind6 implements UF { // rank[i]表示以i为根的集合所表示的树的层数 // 在后续的代码中, 我们并不会维护rank的语意, 也就是rank的值在路径压缩的过程中, 有可能不在是树的层数值 // 这也是我们的rank不叫height或者depth的原因, 他只是作为比较的一个标准 private int[] rank; private int[] parent; // parent[i]表示第i个元素所指向的父节点 // 构造函数 public UnionFind6(int size){ rank = new int[size]; parent = new int[size]; // 初始化, 每一个parent[i]指向自己, 表示每一个元素自己自成一个集合 for( int i = 0 ; i < size ; i ++ ){ parent[i] = i; rank[i] = 1; } } @Override public int getSize(){ return parent.length; } // 查找过程, 查找元素p所对应的集合编号 // O(h)复杂度, h为树的高度 private int find(int p){ if(p < 0 || p >= parent.length) throw new IllegalArgumentException("p is out of bound."); // path compression 2, 递归算法 if(p != parent[p]) parent[p] = find(parent[p]); return parent[p]; } // 查看元素p和元素q是否所属一个集合 // O(h)复杂度, h为树的高度 @Override public boolean isConnected( int p , int q ){ return find(p) == find(q); } // 合并元素p和元素q所属的集合 // O(h)复杂度, h为树的高度 @Override public void unionElements(int p, int q){ int pRoot = find(p); int qRoot = find(q); if( pRoot == qRoot ) return; // 根据两个元素所在树的rank不同判断合并方向 // 将rank低的集合合并到rank高的集合上 if( rank[pRoot] < rank[qRoot] ) parent[pRoot] = qRoot; else if( rank[qRoot] < rank[pRoot]) parent[qRoot] = pRoot; else{ // rank[pRoot] == rank[qRoot] parent[pRoot] = qRoot; rank[qRoot] += 1; // 此时, 我维护rank的值 } } }
树的4个变种:堆、线段树、trie、并查集
原文地址:https://www.cnblogs.com/xiao1572662/p/12122840.html