0050数据结构之并查集

-------------------------并查集-------------------------

并查集是一种特殊的树,由孩子指向父亲

用于解决连接问题和路径问题:

判断网络中节点的连接状态

将每一个元素,看做是一个节点,将a和b合并成一个集合的时候,只需要让a所在的根节点指向b所在的根节点即可,而查询两个元素是否在一个集合中,只需要找到各自的根节点,如果两个根节点是同一个根节点,则说明是在同一个集合中:这样查询较快,合并也较快。

并查集接口设计如下:

package unionFind;
public interface UF {
    int getSize();
    boolean isConnected(int p, int q);
    void unionElements(int p, int q);
}

quik find实现如下:

package unionFind;

// 我们的第一版Union-Find
public class UnionFind1 implements UF {

    private int[] id;    // 我们的第一版Union-Find本质就是一个数组

    public UnionFind1(int size) {

        id = new int[size];

        // 初始化, 每一个id[i]指向自己, 没有合并的元素
        for (int i = 0; i < size; i++)
            id[i] = i;
    }

    @Override
    public int getSize(){
        return id.length;
    }

    // 查找元素p所对应的集合编号
    // O(1)复杂度
    private int find(int p) {
        if(p < 0 || p >= id.length)
            throw new IllegalArgumentException("p is out of bound.");

        return id[p];
    }

    // 查看元素p和元素q是否所属一个集合
    // O(1)复杂度
    @Override
    public boolean isConnected(int p, int q) {
        return find(p) == find(q);
    }

    // 合并元素p和元素q所属的集合
    // O(n) 复杂度
    @Override
    public void unionElements(int p, int q) {

        int pID = find(p);
        int qID = find(q);

        if (pID == qID)
            return;

        // 合并过程需要遍历一遍所有元素, 将两个元素的所属集合编号合并
        for (int i = 0; i < id.length; i++)
            if (id[i] == pID)
                id[i] = qID;
    }
}

quik union实现如下:

package unionFind;

// 我们的第二版Union-Find
public class UnionFind2 implements UF {

    // 我们的第二版Union-Find, 使用一个数组构建一棵指向父节点的树
    // parent[i]表示第一个元素所指向的父节点
    private int[] parent;

    // 构造函数
    public UnionFind2(int size){

        parent = new int[size];

        // 初始化, 每一个parent[i]指向自己, 表示每一个元素自己自成一个集合
        for( int i = 0 ; i < size ; i ++ )
            parent[i] = i;
    }

    @Override
    public int getSize(){
        return parent.length;
    }

    // 查找过程, 查找元素p所对应的集合编号
    // O(h)复杂度, h为树的高度
    private int find(int p){
        if(p < 0 || p >= parent.length)
            throw new IllegalArgumentException("p is out of bound.");

        // 不断去查询自己的父亲节点, 直到到达根节点
        // 根节点的特点: parent[p] == p
        while(p != parent[p])
            p = parent[p];
        return p;
    }

    // 查看元素p和元素q是否所属一个集合
    // O(h)复杂度, h为树的高度
    @Override
    public boolean isConnected( int p , int q ){
        return find(p) == find(q);
    }

    // 合并元素p和元素q所属的集合
    // O(h)复杂度, h为树的高度
    @Override
    public void unionElements(int p, int q){

        int pRoot = find(p);
        int qRoot = find(q);

        if( pRoot == qRoot )
            return;

        parent[pRoot] = qRoot;
    }
}

基于size的优化:让高度小的树的根节点指向高度比较高的树的根节点,这样做的好处是形成的树的高度不会过高,在寻找某个节点的根节点的时候效率也会较快,如果不进行高度判断,最坏的情况有可能形成的是单链表

package unionFind;

// 我们的第三版Union-Find
public class UnionFind3 implements UF{

    private int[] parent; // parent[i]表示第一个元素所指向的父节点
    private int[] sz;     // sz[i]表示以i为根的集合中元素个数

    // 构造函数
    public UnionFind3(int size){

        parent = new int[size];
        sz = new int[size];

        // 初始化, 每一个parent[i]指向自己, 表示每一个元素自己自成一个集合
        for(int i = 0 ; i < size ; i ++){
            parent[i] = i;
            sz[i] = 1;
        }
    }

    @Override
    public int getSize(){
        return parent.length;
    }

    // 查找过程, 查找元素p所对应的集合编号
    // O(h)复杂度, h为树的高度
    private int find(int p){
        if(p < 0 || p >= parent.length)
            throw new IllegalArgumentException("p is out of bound.");

        // 不断去查询自己的父亲节点, 直到到达根节点
        // 根节点的特点: parent[p] == p
        while( p != parent[p] )
            p = parent[p];
        return p;
    }

    // 查看元素p和元素q是否所属一个集合
    // O(h)复杂度, h为树的高度
    @Override
    public boolean isConnected( int p , int q ){
        return find(p) == find(q);
    }

    // 合并元素p和元素q所属的集合
    // O(h)复杂度, h为树的高度
    @Override
    public void unionElements(int p, int q){

        int pRoot = find(p);
        int qRoot = find(q);

        if(pRoot == qRoot)
            return;

        // 根据两个元素所在树的元素个数不同判断合并方向
        // 将元素个数少的集合合并到元素个数多的集合上
        if(sz[pRoot] < sz[qRoot]){
            parent[pRoot] = qRoot;
            sz[qRoot] += sz[pRoot];
        }
        else{ // sz[qRoot] <= sz[pRoot]
            parent[qRoot] = pRoot;
            sz[pRoot] += sz[qRoot];
        }
    }
}

基于rank的优化:深度比较低的那颗树向深度比较高的那颗树合并

package unionFind;

// 我们的第四版Union-Find
public class UnionFind4 implements UF {

    private int[] rank;   // rank[i]表示以i为根的集合所表示的树的层数
    private int[] parent; // parent[i]表示第i个元素所指向的父节点

    // 构造函数
    public UnionFind4(int size){

        rank = new int[size];
        parent = new int[size];

        // 初始化, 每一个parent[i]指向自己, 表示每一个元素自己自成一个集合
        for( int i = 0 ; i < size ; i ++ ){
            parent[i] = i;
            rank[i] = 1;
        }
    }

    @Override
    public int getSize(){
        return parent.length;
    }

    // 查找过程, 查找元素p所对应的集合编号
    // O(h)复杂度, h为树的高度
    private int find(int p){
        if(p < 0 || p >= parent.length)
            throw new IllegalArgumentException("p is out of bound.");

        // 不断去查询自己的父亲节点, 直到到达根节点
        // 根节点的特点: parent[p] == p
        while(p != parent[p])
            p = parent[p];
        return p;
    }

    // 查看元素p和元素q是否所属一个集合
    // O(h)复杂度, h为树的高度
    @Override
    public boolean isConnected( int p , int q ){
        return find(p) == find(q);
    }

    // 合并元素p和元素q所属的集合
    // O(h)复杂度, h为树的高度
    @Override
    public void unionElements(int p, int q){

        int pRoot = find(p);
        int qRoot = find(q);

        if( pRoot == qRoot )
            return;

        // 根据两个元素所在树的rank不同判断合并方向
        // rank低的集合合并到rank高的集合上
        if(rank[pRoot] < rank[qRoot])
            parent[pRoot] = qRoot;
        else if(rank[qRoot] < rank[pRoot])
            parent[qRoot] = pRoot;
        else{ // rank[pRoot] == rank[qRoot]
            parent[pRoot] = qRoot;
            rank[qRoot] += 1;   // 此时, 我维护rank的值
        }
    }
}

路径压缩优化:parent[p]=parent[parent[p]],解下图中的节点4找根节点的时候,会由下图中的图1变为图2的形状;而如果再次寻找节点4和节点3的时候,会再次由下图中的图2变为图3的关系。这样很方便的降低了树的高度。

改变树的高度的时候,却没有改变rank值,是否合理?是合理的,因为rank实际并不代表树的高度,真正的解释是排名:即上边的树的排名(rank)值大于下边的树的排名,这样的一个规律还是一直存在的。

package unionFind;

// 我们的第五版Union-Find
public class UnionFind5 implements UF {

    // rank[i]表示以i为根的集合所表示的树的层数
    // 在后续的代码中, 我们并不会维护rank的语意, 也就是rank的值在路径压缩的过程中, 有可能不在是树的层数值
    // 这也是我们的rank不叫height或者depth的原因, 他只是作为比较的一个标准
    private int[] rank;
    private int[] parent; // parent[i]表示第i个元素所指向的父节点

    // 构造函数
    public UnionFind5(int size){

        rank = new int[size];
        parent = new int[size];

        // 初始化, 每一个parent[i]指向自己, 表示每一个元素自己自成一个集合
        for( int i = 0 ; i < size ; i ++ ){
            parent[i] = i;
            rank[i] = 1;
        }
    }

    @Override
    public int getSize(){
        return parent.length;
    }

    // 查找过程, 查找元素p所对应的集合编号
    // O(h)复杂度, h为树的高度
    private int find(int p){
        if(p < 0 || p >= parent.length)
            throw new IllegalArgumentException("p is out of bound.");

        while( p != parent[p] ){
            parent[p] = parent[parent[p]];
            p = parent[p];
        }
        return p;
    }

    // 查看元素p和元素q是否所属一个集合
    // O(h)复杂度, h为树的高度
    @Override
    public boolean isConnected( int p , int q ){
        return find(p) == find(q);
    }

    // 合并元素p和元素q所属的集合
    // O(h)复杂度, h为树的高度
    @Override
    public void unionElements(int p, int q){

        int pRoot = find(p);
        int qRoot = find(q);

        if( pRoot == qRoot )
            return;

        // 根据两个元素所在树的rank不同判断合并方向
        // rank低的集合合并到rank高的集合上
        if( rank[pRoot] < rank[qRoot] )
            parent[pRoot] = qRoot;
        else if( rank[qRoot] < rank[pRoot])
            parent[qRoot] = pRoot;
        else{ // rank[pRoot] == rank[qRoot]
            parent[pRoot] = qRoot;
            rank[qRoot] += 1;   // 此时, 我维护rank的值
        }
    }
}

递归调用:让该节点到根节点的路径上的所有节点都指向根节点。其中改动为find方法中的while循环改为递归算法

if(p != parent[p])

parent[p] = find(parent[p]);

return parent[p];

经测试,使用递归的方式效率还要慢于上一版的效率

package unionFind;

// 我们的第六版Union-Find
public class UnionFind6 implements UF {

    // rank[i]表示以i为根的集合所表示的树的层数
    // 在后续的代码中, 我们并不会维护rank的语意, 也就是rank的值在路径压缩的过程中, 有可能不在是树的层数值
    // 这也是我们的rank不叫height或者depth的原因, 他只是作为比较的一个标准
    private int[] rank;
    private int[] parent; // parent[i]表示第i个元素所指向的父节点

    // 构造函数
    public UnionFind6(int size){

        rank = new int[size];
        parent = new int[size];

        // 初始化, 每一个parent[i]指向自己, 表示每一个元素自己自成一个集合
        for( int i = 0 ; i < size ; i ++ ){
            parent[i] = i;
            rank[i] = 1;
        }
    }

    @Override
    public int getSize(){
        return parent.length;
    }

    // 查找过程, 查找元素p所对应的集合编号
    // O(h)复杂度, h为树的高度
    private int find(int p){
        if(p < 0 || p >= parent.length)
            throw new IllegalArgumentException("p is out of bound.");

        // path compression 2, 递归算法
        if(p != parent[p])
            parent[p] = find(parent[p]);
        return parent[p];
    }

    // 查看元素p和元素q是否所属一个集合
    // O(h)复杂度, h为树的高度
    @Override
    public boolean isConnected( int p , int q ){
        return find(p) == find(q);
    }

    // 合并元素p和元素q所属的集合
    // O(h)复杂度, h为树的高度
    @Override
    public void unionElements(int p, int q){

        int pRoot = find(p);
        int qRoot = find(q);

        if( pRoot == qRoot )
            return;

        // 根据两个元素所在树的rank不同判断合并方向
        // rank低的集合合并到rank高的集合上
        if( rank[pRoot] < rank[qRoot] )
            parent[pRoot] = qRoot;
        else if( rank[qRoot] < rank[pRoot])
            parent[qRoot] = pRoot;
        else{ // rank[pRoot] == rank[qRoot]
            parent[pRoot] = qRoot;
            rank[qRoot] += 1;   // 此时, 我维护rank的值
        }
    }
}

树的4个变种:堆、线段树、trie、并查集

原文地址:https://www.cnblogs.com/xiao1572662/p/12122840.html

时间: 2024-11-10 13:41:53

0050数据结构之并查集的相关文章

【经典数据结构】并查集

等价关系与等价类 若对于每一对元素(a,b),a,b∈S,a R b或者为true或者为false,则称在集合S上定义关系R.如果a R b为true,那么我们说a与b有关系. 等价关系(equivalence relation)是满足下列三个性质的关系R: (1) 自反性:对于所有a∈S,a R a (2) 对称性:若a R b当且仅当b R a (3) 传递性:若a R b且b R c 则a R c 关系“≤”不是等价关系.虽然它是自反的(即a≤a).可传递的(即由a≤b和b≤c得出a≤c)

数据结构之并查集

并查集(Union-find Sets)是一种非常精巧而实用的数据结构,它主要用于处理一些不相交集合的合并问题.一些常见的用途有求连通子图.求最小生成树的 Kruskal 算法和求最近公共祖先(Least Common Ancestors, LCA)等. 使用并查集时,首先会存在一组不相交的动态集合 S={S1,S2,?,Sk},一般都会使用一个整数表示集合中的一个元素. 每个集合可能包含一个或多个元素,并选出集合中的某个元素作为代表.每个集合中具体包含了哪些元素是不关心的,具体选择哪个元素作为

数据结构之并查集Union-Find Sets

1.  概述 并查集(Disjoint set或者Union-find set)是一种树型的数据结构,常用于处理一些不相交集合(Disjoint Sets)的合并及查询问题. 2.  基本操作 并查集是一种非常简单的数据结构,它主要涉及两个基本操作,分别为: A. 合并两个不相交集合 B. 判断两个元素是否属于同一个集合 (1)       合并两个不相交集合(Union(x,y)) 合并操作很简单:先设置一个数组Father[x],表示x的"父亲"的编号.那么,合并两个不相交集合的方

数据结构 之 并查集(Disjoint Set)

一.并查集的概念: 首先,为了引出并查集,先介绍几个概念: 1.等价关系(Equivalent Relation) 自反性.对称性.传递性. 如果a和b存在等价关系,记为a~b. 2.等价类: 一个元素a(a属于S)的等价类是S的一个子集,它包含所有与a有关系的元素.注意,等价类形成对S的一个划分:S的每一个成员恰好互斥地出现在一个等价类中.为了确定是否a~b,我们仅需验证a和b是否属于同一个等价类即可. 3.并查集: 即为等价类,同一等价类(并查集)中元素两两存在等价关系,不同并查集元素之间没

【数据结构】并查集

 [并查集] 为实现 在 不相交集合 上的操作 (1.合并两个集合  2.查询某个元素属于哪个集合)而定义的一种数据结构     其实现有两种方式:链表和有根树 [应用] 在图论中 一个联通分量的所有点 对应一个集合 对应的操作可以为 判断两个点是不是在同一个联通分量之中 添加一条边合并两个联通分量 [模板] 此处用树来实现 用数组储存 [优化] (1)路径压缩(优化查找操作) (2)通俗点说法就是要合并两个树,将树高度低的接到 高度高的树下, 使合并后的树的高度尽量小 (优化合并操作) [参考

数据结构(并查集||树链剖分):HEOI 2016 tree

[注意事项] 为了体现增强版,题目限制和数据范围有所增强: 时间限制:1.5s 内存限制:128MB 对于15% 的数据,1<=N,Q<=1000. 对于35% 的数据,1<=N,Q<=10000. 对于50% 的数据,1<=N,Q<=100000,且数据均为官方数据. 对于100% 的数据,1<=N,Q<=1000000. 请注意常数因子对于程序运行的影响. 并查集很简单,并查集就是倒序处理,表示删除一个点的标记,删除后不会再加回来,删完后,合并当前点与其

并查集 (Union-Find Sets)及其应用

定义 并查集是一种树型的数据结构,用于处理一些不相交集合(Disjoint Sets)的合并及查询问题.常常在使用中以森林来表示. 集就是让每个元素构成一个单元素的集合,也就是按一定顺序将属于同一组的元素所在的集合合并. 主要操作 初始化 把每个点所在集合初始化为其自身. 通常来说,这个步骤在每次使用该数据结构时只需要执行一次,无论何种实现方式,时间复杂度均为O(N). 查找 查找元素所在的集合,即根节点. 合并 将两个元素所在的集合合并为一个集合. 通常来说,合并之前,应先判断两个元素是否属于

[算法系列之二十八]并查集(不相交集合)

一 概述 并查集(Disjoint set或者Union-find set)是一种树型的数据结构,常用于处理一些不相交集合(Disjoint Sets)的合并及查询问题. 有一个联合-查找算法(union-find algorithm)定义了两个操作用于此数据结构: Find:确定元素属于哪一个子集.它可以被用来确定两个元素是否属于同一子集. Union:将两个子集合并成同一个集合. 因为它支持这两种操作,一个不相交集也常被称为联合-查找数据结构(union-find data structur

并查集模板、

并查集是一种用来管理元素分组情况的数据结构. 并查集的复杂度:并查集加入两个优化(路径压缩和高度的合并)以后效率很高,对n个元素的并查集进行一次操作的复杂度是O(a(n)).在这里,a(n)是阿克曼(Ackermann)函数的反函数,这比O(log(n))还快,不过这是“均摊复杂度”,也就是说不是每一次操作都满足这个复杂度,而是多次操作以后平均每一次的操作的复杂度是O(a(n)) 1 int par[MAX_N]; //父亲 2 int rank[MAX_N]; //树的高度 3 4 //初始化