吴裕雄--天生自然python机器学习:使用K-近邻算法改进约会网站的配对效果

在约会网站使用K-近邻算法

准备数据:从文本文件中解析数据

海伦收集约会数据巳经有了一段时间,她把这些数据存放在文本文件(1如1^及抓 比加 中,每
个样本数据占据一行,总共有1000行。海伦的样本主要包含以下3种特征:

每年获得的飞行常客里程数

玩视频游戏所耗时间百分比

每周消费的冰淇淋公升数

将文本记录到转换NumPy的解析程序

import operator
from numpy import *
from os import listdir

def file2matrix(filename):
    fr = open(filename)
    numberOfLines = len(fr.readlines())         #get the number of lines in the file
    returnMat = zeros((numberOfLines,3))        #prepare matrix to return
    classLabelVector = []                       #prepare labels return
    fr = open(filename)
    index = 0
    for line in fr.readlines():
        line = line.strip()
        listFromLine = line.split(‘\t‘)
        returnMat[index,:] = listFromLine[0:3]
        classLabelVector.append(int(listFromLine[-1]))
        index += 1
    return returnMat,classLabelVector

returnMat,classLabelVector = file2matrix(‘F:\\machinelearninginaction\\Ch02\\datingTestSet2.txt‘)
print(returnMat)
print(classLabelVector)

现在已经从文本文件中导人了数据,并将其格式化为想要的格式,接着我们需要了解数据的
真实含义。当然我们可以直接浏览文本文件,但是这种方法非常不友好,一般来说,我们会采用
图形化的方式直观地展示数据。下面就用?^1!(瓜工具来图形化展示数据内容,以便辨识出一些数
据模式。

import matplotlib
import matplotlib.pyplot as plt

from numpy import *

fig = plt.figure()
ax = fig.add_subplot(111)
datingDataMat,datingLabels = file2matrix(‘F:\\machinelearninginaction\\Ch02\\datingTestSet2.txt‘)
#ax.scatter(datingDataMat[:,1], datingDataMat[:,2])
ax.scatter(datingDataMat[:,1], datingDataMat[:,2], 15.0*array(datingLabels), 15.0*array(datingLabels))
ax.axis([-2,25,-0.2,2.0])
plt.xlabel(‘Percentage of Time Spent Playing Video Games‘)
plt.ylabel(‘Liters of Ice Cream Consumed Per Week‘)
plt.show()

import matplotlib
import matplotlib.pyplot as plt

from numpy import *
from matplotlib.patches import Rectangle

n = 1000 #number of points to create
xcord1 = []; ycord1 = []
xcord2 = []; ycord2 = []
xcord3 = []; ycord3 = []
markers =[]
colors =[]
fw = open(‘E:\\testSet.txt‘,‘w‘)
for i in range(n):
    [r0,r1] = random.standard_normal(2)
    myClass = random.uniform(0,1)
    if (myClass <= 0.16):
        fFlyer = random.uniform(22000, 60000)
        tats = 3 + 1.6*r1
        markers.append(20)
        colors.append(2.1)
        classLabel = 1 #‘didntLike‘
        xcord1.append(fFlyer); ycord1.append(tats)
    elif ((myClass > 0.16) and (myClass <= 0.33)):
        fFlyer = 6000*r0 + 70000
        tats = 10 + 3*r1 + 2*r0
        markers.append(20)
        colors.append(1.1)
        classLabel = 1 #‘didntLike‘
        if (tats < 0): tats =0
        if (fFlyer < 0): fFlyer =0
        xcord1.append(fFlyer); ycord1.append(tats)
    elif ((myClass > 0.33) and (myClass <= 0.66)):
        fFlyer = 5000*r0 + 10000
        tats = 3 + 2.8*r1
        markers.append(30)
        colors.append(1.1)
        classLabel = 2 #‘smallDoses‘
        if (tats < 0): tats =0
        if (fFlyer < 0): fFlyer =0
        xcord2.append(fFlyer); ycord2.append(tats)
    else:
        fFlyer = 10000*r0 + 35000
        tats = 10 + 2.0*r1
        markers.append(50)
        colors.append(0.1)
        classLabel = 3 #‘largeDoses‘
        if (tats < 0): tats =0
        if (fFlyer < 0): fFlyer =0
        xcord3.append(fFlyer); ycord3.append(tats)    

fw.close()
fig = plt.figure()
ax = fig.add_subplot(111)
#ax.scatter(xcord,ycord, c=colors, s=markers)
type1 = ax.scatter(xcord1, ycord1, s=20, c=‘red‘)
type2 = ax.scatter(xcord2, ycord2, s=30, c=‘green‘)
type3 = ax.scatter(xcord3, ycord3, s=50, c=‘blue‘)
ax.legend([type1, type2, type3], ["Did Not Like", "Liked in Small Doses", "Liked in Large Doses"], loc=2)
ax.axis([-5000,100000,-2,25])
plt.xlabel(‘Frequent Flyier Miles Earned Per Year‘)
plt.ylabel(‘Percentage of Time Spent Playing Video Games‘)
plt.show()

准备数据:归一化数值

我们很容易发现,上面方程中数字差值最大的属性对计算结果的影响最大,也就是说,每年
获取的飞行常客里程数对于计算结果的影响将远远大于表2-3中其他两个特征—— 玩视频游戏的
和每周消费冰洪淋公升数—— 的影响。而产生这种现象的唯一原因,仅仅是因为飞行常客里程数
远大于其他特征值。但海伦认为这三种特征是同等重要的,因此作为三个等权重的特征之一,飞
行常客里程数并不应该如此严重地影响到计算结果。

在处理这种不同取值范围的特征值时,我们通常采用的方法是将数值归一化,如将取值范围
处理为0到1或者-1到1之间。下面的公式可以将任意取值范围的特征值转化为0到1区间内的值:

其中min 和max乂分别是数据集中的最小特征值和最大特征值。虽然改变数值取值范围增加了
分类器的复杂度,但为了得到准确结果,我们必须这样做。

增加一个
新函数抓autoNorm该函数可以自动将数字特征值转化为0到1的区间。

def autoNorm(dataSet):
    minVals = dataSet.min(0)
    maxVals = dataSet.max(0)
    ranges = maxVals - minVals
    normDataSet = zeros(shape(dataSet))
    m = dataSet.shape[0]
    normDataSet = dataSet - tile(minVals, (m,1))
    normDataSet = normDataSet/tile(ranges, (m,1))   #element wise divide
    return normDataSet, ranges, minVals

normDataSet, ranges, minVals = autoNorm(returnMat)
print(normDataSet)

测试算法:作为完整程序验证分类器

机器学习算法一个很
重要的工作就是评估算法的正确率,通常我们只提供已有数据的90%作为训练样本来训练分类
器 ,而使用其余的10%数据去测试分类器,检测分类器的正确率。

10%的测试数据应该
是随机选择的,由于海伦提供的数据并没有按照特定目的来排序,所以我们可以随意选择10%数
据而不影响其随机性.

前面我们巳经提到可以使用错误率来检测分类器的性能。对于分类器来说,错误率就是分类
器给出错误结果的次数除以测试数据的总数,完美分类器的错误率为0,而错误率为1.0的分类器
不会给出任何正确的分类结果。代码里我们定义一个计数器变量,每次分类器错误地分类数据,
计数器就加1, 程序执行完成之后计数器的结果除以数据点总数即是错误率。

分类器针对约会网站的测试代码

def datingClassTest():
    hoRatio = 0.50      #hold out 10%
    datingDataMat,datingLabels = file2matrix(‘F:\\machinelearninginaction\\Ch02\\datingTestSet2.txt‘)       #load data setfrom file
    normMat, ranges, minVals = autoNorm(datingDataMat)
    m = normMat.shape[0]
    numTestVecs = int(m*hoRatio)
    errorCount = 0.0
    for i in range(numTestVecs):
        classifierResult = classify0(normMat[i,:],normMat[numTestVecs:m,:],datingLabels[numTestVecs:m],3)
        print("the classifier came back with: %d, the real answer is: %d" % (classifierResult, datingLabels[i]))
        if (classifierResult != datingLabels[i]):
            errorCount += 1.0
    print("the total error rate is: %f" % (errorCount/float(numTestVecs)))
    print(errorCount)

datingClassTest()

算法预测错误率大约是:6.6%,算是很不错的了。

使用算法:构建完整可用系统

上面我们已经在数据上对分类器进行了测试,现在终于可以使用这个分类器为海伦来对人们
分类。我们会给海伦一小段程序,通过该程序海伦会在约会网站上找到某个人并输入他的信息。
程序会给出她对对方喜欢程度的预测值。

def classifyPerson():
    resultList = [‘not at all‘,‘in small doses1‘,‘in large doses‘]
    percentTats = float(input("percentage of time spent playing video games?"))
    ffMiles = float(input("freguent flier miles earned per year?"))
    iceCream = float(input(‘liters of ice cream consumed per year?‘))
    datingDataMat,datingLabels = file2matrix(‘F:\\machinelearninginaction\\Ch02\\datingTestSet2.txt‘)
    normMat, ranges, minVals = autoNorm(datingDataMat)
    inArr = array([ffMiles, percentTats, iceCream])
    classifierResult = classify0((inArr-minVals)/ranges,normMat,datingLabels,3)
    print("You will probably like this person:",resultList[classifierResult - 1])

classifyPerson()

原文地址:https://www.cnblogs.com/tszr/p/12040524.html

时间: 2024-10-12 07:19:29

吴裕雄--天生自然python机器学习:使用K-近邻算法改进约会网站的配对效果的相关文章

机器学习实战笔记——利用KNN算法改进约会网站的配对效果

一.案例背景 我的朋友海伦一直使用在线约会网站寻找合适自己的约会对象.尽管约会网站会推荐不同的人选,但她并不是喜欢每一个人.经过一番总结,她发现曾交往过三种类型的人: (1)不喜欢的人: (2)魅力一般的人: (3)极具魅力的人: 尽管发现了上述规律,但海伦依然无法将约会网站推荐的匹配对象归入恰当的分类,她觉得可以在周一到周五约会那些魅力一般的人,而周末则更喜欢与那些极具魅力的人为伴.海伦希望我们的分类软件可以更好地帮助她将匹配对象划分到确切的分类中.此外,海伦还收集了一些约会网站未曾记录的数据

吴裕雄--天生自然python机器学习:决策树算法

我们经常使用决策树处理分类问题’近来的调查表明决策树也是最经常使用的数据挖掘算法. 它之所以如此流行,一个很重要的原因就是使用者基本上不用了解机器学习算法,也不用深究它 是如何工作的. K-近邻算法可以完成很多分类任务,但是它最大的缺点就是无法给出数据的内 在含义,决策树的主要优势就在于数据形式非常容易理解. 决策树很多任务都 是为了数据中所蕴含的知识信息,因此决策树可以使用不熟悉的数据集合,并从中提取出一系列 规则,机器学习算法最终将使用这些机器从数据集中创造的规则.专家系统中经常使用决策树,

吴裕雄--天生自然python机器学习:朴素贝叶斯算法

分类器有时会产生错误结果,这时可以要求分类器给出一个最优的类别猜测结果,同 时给出这个猜测的概率估计值. 概率论是许多机器学习算法的基础 在计算 特征值取某个值的概率时涉及了一些概率知识,在那里我们先统计特征在数据集中取某个特定值 的次数,然后除以数据集的实例总数,就得到了特征取该值的概率. 首先从一个最简单的概率分类器开始,然后给 出一些假设来学习朴素贝叶斯分类器.我们称之为“朴素”,是因为整个形式化过程只做最原始.最简单的假设. 基于贝叶斯决策理论的分类方法 朴素贝叶斯是贝叶斯决策理论的一部

吴裕雄--天生自然python机器学习:支持向量机SVM

基于最大间隔分隔数据 import matplotlib import matplotlib.pyplot as plt from numpy import * xcord0 = [] ycord0 = [] xcord1 = [] ycord1 = [] markers =[] colors =[] fr = open('F:\\machinelearninginaction\\Ch06\\testSet.txt')#this file was generated by 2normalGen.

吴裕雄--天生自然python机器学习:使用朴素贝叶斯过滤垃圾邮件

使用朴素贝叶斯解决一些现实生活中 的问题时,需要先从文本内容得到字符串列表,然后生成词向量. 准备数据:切分文本 测试算法:使用朴素贝叶斯进行交叉验证 文件解析及完整的垃圾邮件测试函数 def createVocabList(dataSet): vocabSet = set([]) #create empty set for document in dataSet: vocabSet = vocabSet | set(document) #union of the two sets return

机器学习实战——第二章之改进约会网站的配对效果

三种类型:不喜欢的-1,魅力一般的-2,极具魅力的-3. 样本特征:每年获得的飞行常客里程数,玩视频游戏所耗时间百分比,每周消费的冰淇淋公升数. 1 from numpy import * 2 import matplotlib 3 import matplotlib.pyplot as plt 4 5 ''' 6 输入文本文件名字符串,输出训练样本矩阵和类标签向量 7 ''' 8 def file2matrix(filename): 9 fr = open(filename) 10 array

《机器学习实战》代码实现学习一 使用K-近邻算法改进约会网站的配对效果(数据准备)

1.数据准备:从文本文件中解析数据 文本文件datingTestSet2.txt网盘地址为: https://pan.baidu.com/s/19HNwo1TSWjWhbRwsyL-itg 提取码为:mz11 约会数据由1000行,主要包含一下三种特征: 每年获得的飞行常客里程数 玩视频游戏所耗时间百分比 每周消费的冰淇淋公升数 但是在把这些特征输入到分类器之前,必须将待处理数据格式改变为分类器可以接受的格式,在kNN.py中创建名为file2matrix的函数,以此来处理输入格式问题,该函数的

机器学习实战笔记-K近邻算法2(改进约会网站的配对效果)

案例二.:使用K-近邻算法改进约会网站的配对效果 案例分析: 海伦收集的数据集有三类特征,分别是每年获得的飞行常客里程数.玩视频游戏所耗时间百分比. 每周消费的冰淇淋公升数.我们需要将新数据的每个新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中特征最相似数据(最近邻)的分类标签.一般来说,我们只选择样本数据集中前k个最相似的数据,这就是k-近邻算法中k的出处,通常k是不大于20的整数.最后,选择k个最相似数据中出现次数最多的分类,作为新数据的分类. 流程:在约会网站上使用K

机器学习实战1-2 KNN改进约会网站的配对效果 datingTestSet2.txt 下载方法

今天读<机器学习实战>读到了使用k-临近算法改进约会网站的配对效果,道理我都懂,但是看到代码里面的数据样本集 datingTestSet2.txt 有点懵,这个样本集在哪里,只给了我一个文件名,没有任何内容啊. 上网百度了这个文件名,发现很多博主的博客里可以下载,我很好奇,同样是读<机器学习实战>,他们是从哪里下载的数据样本集呢?就重新读了这本书.终于在"关于本书"最后的"作者在线里面"找到了网址!就是这个,大家需要可以来这里下载. http