量化交易

  • 什么是量化交易?
  • 为什么需要量化交易?
  • 量化交易能干什么?
  • 做量化交易需要什么?

什么是量化交易?

? 量化交易是指借助现代统计学和数学的方法,利用计算机技术来进行交易的证券投资方式。便于理解的说,量化交易主要是做这样的事:

  • 1、从一个灵感开始

    • 灵感就是指那些你想验证的可能会盈利的方法,比如银行股可能是良好的投资品种、一旦跨过20日均线后股价会继续涨、流传许久的羊驼交易法等等。灵感获取的方式可以是阅读、听人说、自己悟等等。
    • 这里我们以一个简单的情况为例进行讲解。比如你的灵感是这样的:
        如果股价显著低于近几日的平均价,则买入
        如果股价显著高于近几日的平均价,则卖出
    • 现在,你想知道这样操作究竟会不会赚钱?

  • 2、把灵感细化成明确的可执行的交易策略

    • 一般灵感都很模糊,需要将其细化成明确的可执行的策略,目的是为了能得到确定的结果,以及为后续程序化准备。比如,你通过阅读了解到索罗斯的反身性概念,想将它应用到股市,这个反身性就很模糊,就需要明确什么条件下买卖,买卖什么品种,买卖多少量等,从而形成一个明确的交易策略,让不同人根据你的描述在相同情形下都能做出相同的操作。
    • 继续以之前那个关于平均价的灵感为例:
        如果股价显著低于近几日的平均价,则买入
        如果股价显著高于近几日的平均价,则卖出
    • 显然它是不够明确的。比如多低叫显著低于?多高叫显著高于?近几日究竟是几日?买入卖出是买卖多少?我们把它细化:

      如果股价低于近20日平均价10%,则用全部可用资金买入
      如果股价高于近20日平均价10%,则卖出全部所持的该股票

    • 还有一点不明确的地方,买卖哪个股票呢?我们认为这个交易方法盈利与否应该跟交易哪个股票关系不大,但st股票除外(知道st股票是一类有风险特别大的股票就好,详情请百度),所以股票的选择范围是除st股外的国内A股的所有股票。所以我们进一步细化:
        每个交易日监测是除st股外的国内A股的所有股票的股价
        如果股价低于近20日平均价10%,则用全部可用资金买入该股票
        如果股价高于近20日平均价10%,则卖出全部所持有的该股票
    • 现在我们基本已经把之前的灵感细化成明确的可执行的交易策略。当然,可能还有些地方不够明确,也可能有些细节还不确定要改动,这些可以随时想到随时再改,不必一次做到完美。

  • 3、把策略转成程序

    • 就是把明确后的策略通过编程转成程序,好让计算机能根据历史数据模拟执行该策略,以及能根据实际行情进行反应并模拟交易或真实交易。
    • 简言之,就是把刚刚的策略翻译成计算机可识别的代码语言,即把这个:
        每个交易日监测是除st股外的国内A股的所有股票的股价
        如果股价低于近20日平均价10%,则用全部可用资金买入该股票
        如果股价高于近20日平均价10%,则卖出全部所持有的该股票
    • 写成类似这样的代码(下面的代码并不完全符合,只是展示下大概的样子):
        def initialize(context):
            g.security = ['002043.XSHE','002582.XSHE']
        def handle_data(context, data):
            for i in g.security:
                last_price = data[i].close
                average_price = data[i].mavg(20, 'close')
                cash = context.portfolio.cash
                if last_price > average_price:
                    order_value(i, cash)
                elif last_price < average_price:
                    order_target(i, 0)
    • 这样一来,就把刚才细化好策略转成了代码程序,计算机就能运行了。这个过程你可以理解成用计算机能听懂的语言(代码),把你的策略告诉给计算机了。

  • 4、检验策略效果

    • 现在计算机理解了你的策略,你现在可以借助计算机的力量来验证你的策略了。基本的检验策略方法有回测和模拟交易两种方法。
    • 回测是让计算机能根据一段时间的历史数据模拟执行该策略,根据结果评价并改进策略。继续之前的那个均价的策略例子的话就是这样的:
      • 设定初始的虚拟资产比如500000元、一个时期比如20060101到20160101,把这一时期的各种数据如估计股价行情等发给计算机,计算机会利用这些数据模仿真实的市场,执行你刚才告诉它的策略程序。最后最后计算机会给你一份报告,根据这个报告你就会知道,在20060101的500000元,按照你的策略交易到20160101,会怎样?一般包括盈亏情况,下单情况,持仓变化,以及一些统计指标等,从而你能据此评估交易策略的好坏。
      • 如果结果不好,则需要分析原因并改进。如果结果不错,则可以考虑用模拟交易进一步验证。
    • 模拟交易是让计算机能根据实际行情模拟执行该策略一段时间,根据结果评价并改进策略。与回测不同,回测是用历史数据模拟,模拟交易使用实际的实时行情来模拟执行策略的。举例就是这样:
      • 设定初始的虚拟资产比如500000元,选择开始执行模拟交易的时间点,比如明天。那么从明天开始,股市开始交易,真实的行情数据就会实时地发送到计算机,计算机会利用真实的数据模仿真实的市场,执行你的策略程序。同时,你会得到一份实时更新的报告。这报告类似于回测得到的报告,不同的是会根据实际行情变化更新。同样你能据此评估交易策略的好坏。
    • 可见,回测是用历史数据模拟执行策略,模拟交易是用未来的实际行情模拟执行策略。如果策略在回测与模拟交易的表现都非常好,你可以考虑进行完全真实的真金白银的实盘交易。

  • 5、进行实盘交易并不断维护修正

    • 实盘交易就是让计算机能自动根据实际行情,用真金白银自动执行策略,进行下单交易。注意,这时不再是用虚拟资产模拟交易,亏损和盈利都是真钱。实盘交易一般也会给出一份类似模拟交易的会不断更新的报告,从而不断要观察策略的实盘表现并及时调整与改进策略,使之持续平稳盈利。

为什么需要量化交易?

  • 量化交易可以让你的交易效率提高百倍,与传统交易相比就如同镰刀与收割机

传统交易模式:

量化交易模式:

一些金融行业较为发达的国家,量化交易已经在行业内普及,占据的股市大部分的成交量。具体量化交易能做哪些事,咱来一步一步的推敲。

量化交易能干什么?

量化交易的价值有很多,只提下最突出的价值所在:

  • 1、可以利用大量历史数据检验策略,效率提升百倍。当我们想验证交易策略的时候,一个基本的想法是想知道它在历史上表现如何,这往往需要大量的历史数据与计算量,量化交易做一次回测可能几分钟就可以得到结果了,相比于传统人工做法效率的提升是成百倍的。
  • 2、更科学更客观的衡量交易策略的效果。比如一个关于某技术指标的策略,人工的进行了10个交易日的验证,效果都不错,但这就能说明这指标不错吗?不,10次太少了,你需要更多的验证,比如1000个交易日,人工验证不可行,量化交易则又快又准。而且量化交易还可以利用数学与统计学自动给出客观的结果,比如年化收益率、最大回撤率、夏普比率等。
  • 3、全市场实时捕捉交易机会。当你知道一个盈利条件,当股价一旦满足这条件,你就可以操作盈利。问题是,市场几千个股票,股价时时刻刻都在变动,你能盯住几个,你会错失多少个机会。但量化交易可以利用计算机全市场实时盯盘,可以不错过任何交易机会,加倍你的盈利能力。
  • 4、更多的盈利机会。量化交易可以利用计算机对海量数据分析得到常人难以发现的盈利机会,而且有些机会只有量化交易才能利用。比如你发现一种交易方法,其特点是盈亏的额度相等,但盈利的概率是55%,亏损概率45%。首先这种小差距的概率规律,非量化交易不能发现,其次,要利用这个规律盈利需要大量次数的交易才能稳定盈利,这也非量化交易不可。

做量化交易需要什么?

  • 通常一个投资者做量化交易所需要做的准备,就如同让一个农民自己去造一个大型收割机,而且还是从挖矿开始做起,极度困难,所以量化交易最初在金融与科技最为发达的美国由少数顶级精英发起的。

  • 要有各种数据。要有能方便使用的各种投资相关的数据。这要考虑到各种数据的收集、存储、清洗、更新,以及数据取用时的便捷、速度、稳定。

  • 还要有一套量化交易的系统,要有能编写策略、执行策略、评测策略的系统。这要考虑到系统对各种策略编写的支持、系统进行回测与模拟的高仿真、系统执行策略的高速、系统评测策略的科学可靠全方面。

原文地址:https://www.cnblogs.com/Yang-Sen/p/11997702.html

时间: 2024-11-09 02:41:48

量化交易的相关文章

量化交易风险指标

量化交易风险指标 风险指标数据有利于对策略进行一个客观的评价,主要风险指标包括: 策略收益(Total Returns) 策略年化收益(Total Annualized Returns) 基准收益(Benchmark Returns) 基准年化收益(Benchmark Annualized Returns) 阿尔法(Alpha):投资中面临着系统性风险(Beta)和非系统性风险(Alpha),Alpha是投资者获得与市场波动无关的回报.比如投资者获得了15%的回报,其基准获得了10%的回报,那么

深度神经网络在量化交易里的应用 之二 -- 用深度网络(LSTM)预测5日收盘价格

    距离上一篇文章,正好两个星期. 这边文章9月15日 16:30 开始写. 可能几个小时后就写完了.用一句粗俗的话说, "当你怀孕的时候,别人都知道你怀孕了, 但不知道你被日了多少回 " ,纪念这两周的熬夜,熬夜.  因为某些原因,文章发布的有点仓促,本来应该再整理实验和代码比较合适.文章都是两个主要作用: 对自己的工作总结, 方便自己回顾和分享给有兴趣的朋友. 不说废话了, 进入正题. 本次的课题很简单, 深度神经网络(AI)来预测5日和22日后的走势. (22日尚未整理, 不

程序员的量化交易之路(1)----规划开篇

其实,一直对量化交易有一定的理解和情节.早在中大读研究生的时候实验室师兄,已经去了中国平安核心投资团队,做高频交易研究的国源师兄的影响,就开始对金融世界产生了浓厚的兴趣.看了丁磊编著的<量化投资--策略与技术>和艾琳.奥尔德里奇的<高频交易>,反复的看,但是都入不了味,现在回过头来想,一个连股都不炒的人怎么可能入味呢.对一些金融的基本概念都不懂. 2013年7月出社会工作后,在10月份确立目标.需要炒股,而且需要一个深入的理解金融的世界.所以确定去考一个证券从业考试,选了证券基础和

股票量化交易初学记录------资源集合

Seeking Alpha:http://www.nuclearphynance.com/ Nuclear Phunace:http://seekingalpha.com/ SSRN:http://www.ssrn.com/en/ 一.资料 掘金量化交易入门:http://forum.myquant.cn/t/topic/74 在做系统回测时,一定要量化表示系统性能.定量策略的“业界标准”度量为最大资金回挫与夏普比率. 最大资金回挫:一段时间(通常一年)内账户资金 曲线从波峰至波谷的最大跌幅,常

机器学习与量化交易项目班 [从零搭建自动交易系统]

第一课 自动化交易综述知识点1: 课程内容综述,自动化/算法交易介绍,python在自动交易中的应用简介第二课 量化交易系统综述知识点1:回测,自动交易,策略建模,常见平台使用第三课 搭建自己的量化数据库知识点1:软件需求,数据获取方式,数据存储方式实战项目:金融数据的存储,读取第四课 用Python进行金融数据分析知识点1:数据清理与特征选择实战项目:pandas与金融数据分析第五课 策略建模综述知识点1:介绍量化交易中的策略建模流程及主要处理方式第六课 策略建模:基于机器学习的策略建模实战项

Vpai钱包,量化交易,溯源,区块链软件系统开发

Vpai钱包,区块链多币种钱包,交易所各种模式,量化交易,区块链+产品溯源解决方案,区块链各种软件项目开发,像市面上,网易星球,电报圈,inchat,BiYong,币聊,区块链社交应用类型,区块链游戏,交易挖矿交易所,云挖矿系统等等.区块链软件开发公司提供相应的技术开发支持. 贺顾问 QKL17999 搜索V关注,解决你们想做项目的各种问题. 抖音很火,相应的火牛视频诞生后,这种结合区块链+抖音给运营方带来了天然的用户.市场需要什么就去什么,市场还没人去做的领域要抓紧占领. 数字币交易所,币币o

《零起点Python大数据与量化交易》中文PDF+源代码

下载:https://pan.baidu.com/s/1JWmwMFHZV0mYAyAl-HkPyw 更多资料:http://blog.51cto.com/3215120 <零起点Python大数据与量化交易>中文PDF+源代码中文PDF,带目录和书签,655页,文字可以复制粘贴.配套源代码. 本书是国内关于Python大数据与量化交易的原创图书. 如图: 原文地址:http://blog.51cto.com/4820691/2311108

量化交易和高频交易有什么区别

很多人对于量化交易和高频交易分不清,经常混淆,下面简单说说他们的区别. 量化交易是指投资者利用计算机技术.金融工程建模等手段将自己的金融操作方式,用很明确的方式去定义和描述,用以协助投资者进行投资决策,并且严格的按照所设定的规则去执行交易策略(买.卖)的交易方式. 简而言之,量化交易是以定量化方法进行投资的各种技术综合.现实应用中,量化交易往往与基本面投资.技术分析有机结合,帮助投资者制定决策.减少执行成本.进行套利.风险对冲和帮助做市商实现报价的功能. 按照数学模型的理念和对计算机技术的利用方

量化交易(Quantitative Trading)

什么是量化交易 量化交易是指借助现代统计学和数学的方法,利用计算机技术来进行交易的证券投资方式.量化交易从庞大的历史数据中海选能带来超额收益的多种“大概率”事件以制定策略,用数量模型验证及固化这些规律和策略,然后严格执行已固化的策略来指导投资,以求获得可以持续的.稳定且高于平均收益的超额回报. 量化交易起源于上世纪七十年代的股票市场,之后迅速发展和普及,尤其是在期货交易市场,程序化逐渐成为主流.有数据显示,国外成熟市场期货程序化交易已占据总交易量的70%-80%,而国内则刚刚起步.手工交易中交易

Python量化交易学习课程

量化投资是起源于美国的高级投资方法论,在国内也有十余年的发展历史,代表当今金融业最前沿的投资技术和水准,卓越稳定的实盘投资业绩使得量化投资具有坚实的高端市场需求. 本量化投资方向系列课程通过对各种量化投资方法与理论的介绍,结合机器学习的实际应用案例进行引导式教学,全面地提高学员对量化投资的认知能力和实践能力. 课程地址:Python量化交易课程 面向人群: 适合有志于从事量化投资工作的计算机行业人员及在校学生: 数据科学工作者,可以从本课程中学会从数据科学的方法玩转量化交易: 所有金融机构从业人