洛谷 P3373 【模板】线段树 2

P3373 【模板】线段树 2

题目描述

如题,已知一个数列,你需要进行下面三种操作:

1.将某区间每一个数乘上x

2.将某区间每一个数加上x

3.求出某区间每一个数的和

输入输出格式

输入格式:

第一行包含三个整数N、M、P,分别表示该数列数字的个数、操作的总个数和模数。

第二行包含N个用空格分隔的整数,其中第i个数字表示数列第i项的初始值。

接下来M行每行包含3或4个整数,表示一个操作,具体如下:

操作1: 格式:1 x y k 含义:将区间[x,y]内每个数乘上k

操作2: 格式:2 x y k 含义:将区间[x,y]内每个数加上k

操作3: 格式:3 x y 含义:输出区间[x,y]内每个数的和对P取模所得的结果

输出格式:

输出包含若干行整数,即为所有操作3的结果。

输入输出样例

输入样例#1: 复制

5 5 38
1 5 4 2 3
2 1 4 1
3 2 5
1 2 4 2
2 3 5 5
3 1 4

输出样例#1: 复制

17
2

说明

时空限制:1000ms,128M

数据规模:

对于30%的数据:N<=8,M<=10

对于70%的数据:N<=1000,M<=10000

对于100%的数据:N<=100000,M<=100000

(数据已经过加强^_^)

样例说明:

故输出应为17、2(40 mod 38=2)

思路:线段树的区间加法和区间乘法和区间查询。

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define MAXN 100001
using namespace std;
struct nond{
    long long l,r,sum;
    long long flag1,falg2;
}tree[MAXN*4];
long long n,m,p;
void up(long long now){
    tree[now].sum=(tree[now*2].sum+tree[now*2+1].sum)%p;
}
void build(long long now,long long l,long long r){
    tree[now].l=l;tree[now].r=r;
    tree[now].flag1=1;tree[now].falg2=0;
    if(tree[now].l==tree[now].r){
        scanf("%d",&tree[now].sum);
        return ;
    }
    long long mid=(tree[now].l+tree[now].r)/2;
    build(now*2,l,mid);
    build(now*2+1,mid+1,r);
    up(now);
}
void down(long long now){
    if(tree[now].flag1!=1){
        tree[now*2].flag1=tree[now*2].flag1*tree[now].flag1%p;
        tree[now*2].falg2=tree[now*2].falg2*tree[now].flag1%p;
        tree[now*2].sum=tree[now*2].sum*tree[now].flag1%p;
        tree[now*2+1].flag1=tree[now*2+1].flag1*tree[now].flag1%p;
        tree[now*2+1].falg2=tree[now*2+1].falg2*tree[now].flag1%p;
        tree[now*2+1].sum=tree[now*2+1].sum*tree[now].flag1%p;
        tree[now].flag1=1;
    }
    if(tree[now].falg2){
        tree[now*2].falg2=(tree[now*2].falg2+tree[now].falg2)%p;
        tree[now*2+1].falg2=(tree[now*2+1].falg2+tree[now].falg2)%p;
        tree[now*2].sum=(tree[now*2].sum+(tree[now*2].r-tree[now*2].l+1)*tree[now].falg2%p)%p;
        tree[now*2+1].sum=(tree[now*2+1].sum+(tree[now*2+1].r-tree[now*2+1].l+1)*tree[now].falg2%p)%p;
        tree[now].falg2=0;
    }
}
void changechen(long long now,long long l,long long r,long long k){
    if(tree[now].l==l&&tree[now].r==r){
        tree[now].sum=tree[now].sum*k%p;
        tree[now].flag1=tree[now].flag1*k%p;
        tree[now].falg2=tree[now].falg2*k%p;
        return ;
    }
    if(tree[now].flag1!=1||tree[now].falg2)    down(now);
    long long mid=(tree[now].l+tree[now].r)/2;
    if(r<=mid)    changechen(now*2,l,r,k);
    else if(l>mid)    changechen(now*2+1,l,r,k);
    else{
        changechen(now*2,l,mid,k);
        changechen(now*2+1,mid+1,r,k);
    }
    up(now);
}
void changeadd(long long now,long long l,long long r,long long k){
    if(tree[now].l==l&&tree[now].r==r){
        tree[now].sum=(tree[now].sum+(tree[now].r-tree[now].l+1)*k%p)%p;
        tree[now].falg2=(tree[now].falg2+k)%p;
        return ;
    }
    if(tree[now].flag1!=1||tree[now].falg2)    down(now);
    long long mid=(tree[now].l+tree[now].r)/2;
    if(r<=mid)    changeadd(now*2,l,r,k);
    else if(l>mid)    changeadd(now*2+1,l,r,k);
    else{
        changeadd(now*2,l,mid,k);
        changeadd(now*2+1,mid+1,r,k);
    }
    up(now);
}
long long query(long long now,long long l,long long r){
    if(tree[now].l==l&&tree[now].r==r)
        return tree[now].sum%p;
    if(tree[now].flag1!=1||tree[now].falg2)    down(now);
    long long mid=(tree[now].l+tree[now].r)/2;
    if(r<=mid)    return query(now*2,l,r);
    else if(l>mid)    return query(now*2+1,l,r);
    else    return (query(now*2,l,mid)+query(now*2+1,mid+1,r))%p;
}
int main(){
    scanf("%lld%lld%lld",&n,&m,&p);
    build(1,1,n);
    for(long long i=1;i<=m;i++){
        long long opt,x,y,k;
        scanf("%lld%lld%lld",&opt,&x,&y);
        if(opt==1){
            scanf("%lld",&k);
            changechen(1,x,y,k);
        }
        else if(opt==2){
            scanf("%lld",&k);
            changeadd(1,x,y,k);
        }
        else if(opt==3)    printf("%lld\n",query(1,x,y)%p);
    }
}

原文地址:https://www.cnblogs.com/cangT-Tlan/p/8637881.html

时间: 2024-10-05 23:09:14

洛谷 P3373 【模板】线段树 2的相关文章

线段树_区间加乘(洛谷P3373模板)

题目描述 如题,已知一个数列,你需要进行下面三种操作: 1.将某区间每一个数乘上x 2.将某区间每一个数加上x 3.求出某区间每一个数的和 输入格式: 第一行包含三个整数N.M.P,分别表示该数列数字的个数.操作的总个数和模数. 第二行包含N个用空格分隔的整数,其中第i个数字表示数列第i项的初始值. 接下来M行每行包含3或4个整数,表示一个操作,具体如下: 操作1: 格式:1 x y k 含义:将区间[x,y]内每个数乘上k 操作2: 格式:2 x y k 含义:将区间[x,y]内每个数加上k

洛谷P3373 【模板】线段树 2

 P3373 [模板]线段树 2 47通过 186提交 题目提供者HansBug 标签 难度提高+/省选- 提交  讨论  题解 最新讨论 为啥WA(TAT) 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格式: 第一行包含三个整数N.M.P,分别表示该数列数字的个数.操作的总个数和模数. 第二行包含N个用空格分隔的整数,其中第i个数字表示数列第i项的初始值. 接下来M行每行包含3或4

AC自动机(附洛谷P3769模板题)

首先,介绍一下AC自动机(Aho-Corasick automaton),是一种在一个文本串中寻找每一个已给出的模式串的高效算法. 在学习AC自动机之前,你需要先学习Trie树和KMP算法,因为AC自动机正式利用并结合了两者的思想. 说到实际的不同,其实AC自动机只是在Trie树上引入了一个类似KMP中next数组的东西叫做Fail指针. 对于每一个节点,Fail指针指向该节点所代表的字符串中,次长的.在Trie树中存在的后缀(因为最长的在Trie树种存在的后缀就是其本身)所代表的节点. 举例:

算法模板——线段树1(区间加法+区间求和)

实现功能——1:区间加法:2:区间求和 最基础最经典的线段树模板.由于这里面操作无顺序之分,所以不需要向下pushup,直接累积即可 1 var 2 i,j,k,l,m,n,a1,a2,a3,a4:longint; 3 a,b:array[0..100000] of longint; 4 function max(x,y:longint):longint;inline; 5 begin 6 if x>y then max:=x else max:=y; 7 end; 8 function min

算法模板——线段树5(区间开根+区间求和)

实现功能——1:区间开根:2:区间求和(此模板以BZOJ3038为例) 作为一个非常规的线段树操作,其tag也比较特殊呵呵哒 1 var 2 i,j,k,l,m,n:longint; 3 a,b:array[0..500000] of int64; 4 function max(x,y:longint):longint;inline; 5 begin 6 if x>y then max:=x else max:=y; 7 end; 8 function min(x,y:longint):long

【C++】最近公共祖先LCA(Tarjan离线算法)&amp;&amp; 洛谷P3379LCA模板

1.前言 首先我们介绍的算法是LCA问题中的离线算法-Tarjan算法,该算法采用DFS+并查集,再看此算法之前首先你得知道并查集(尽管我相信你如果知道这个的话肯定是知道并查集的),Tarjan算法的优点在于相对稳定,时间复杂度也比较居中,也很容易理解(个人认为). 2.思想 下面详细介绍一下Tarjan算法的思想: 1.任选一个点为根节点,从根节点开始. 2.遍历该点u所有子节点v,并标记这些子节点v已被访问过. 3.若是v还有子节点,返回2,否则下一步. 4.合并v到u上. 5.寻找与当前点

【线段树】【P3372】模板-线段树

百度百科 Definition&Solution 线段树是一种log级别的树形结构,可以处理区间修改以及区间查询问题.期望情况下,复杂度为O(nlogn). 核心思想见百度百科,线段树即将每个线段分成左右两个线段做左右子树.一个线段没有子树,当且仅当线段表示的区间为[a,a]. 由于编号为k的节点的子节点为2k以及2k+1,线段树可以快速的递归左右叶节点. lazy标记:当进行区间修改的时候,如果一个区间整体全部被包含于要修改的区间,则可以将该区间的值修改后,将lazy标记打在区间上,不再递归左

CSU-ACM集训-模板-线段树进阶

A题 原CF 438D The Child and Sequence 题意 给一串数字,m次操作,1.区间查询:2.区间取模:3.单点修改 基本思路 考虑到模如果大于区间的最大值,则取模没有意义.若小于则向下查询并修改,考虑到一个数每次取模最多为原数的\(1/2\),则可认为修改次数不超过\(\log{2}{n}\) 时间复杂度为\(O(n\log{2}{n}\log{2}{n})\) #include<bits/stdc++.h> #define FOR(i,a,b) for(int i=a

模板 - 线段树

线段树还需要模板的菜鸡 #include<bits/stdc++.h> using namespace std; typedef long long ll; #define lt ls, l, m #define rt rs, m + 1, r #define ls (o<<1) #define rs (o<<1|1) const int MAXM = 100000 + 5; ll a[MAXM]; ll st[MAXM * 4], lazy[MAXM * 4]; in