人脸图像的几何归一化和灰度归一化

转载处:http://blog.csdn.net/liulianfanjianshi/article/details/9279565

在对人脸表情进行识别时,人脸的归一化处理是至关重要的一环,它涉及到下一步处理的好坏。

人脸的归一化包括几何归一化和灰度归一化,几何归一化分两步:人脸校正和人脸裁剪。而灰度归

一化主要是增加图像的对比度,进行光照补偿。

1.几何归一化

几何归一化的目的主要是将表情子图像变换为统一的尺寸,有利于表情特征的提取。具体步骤如下:

(1)标定特征点,这里用[x,y] = ginput(3)函数来标定两眼和鼻子三个特征点。主要是用鼠标动手标

定,获取三个特征点的坐标值。

(2)根据左右两眼的坐标值旋转图像,以保证人脸方向的一致性。设两眼之间的距离为d,其中点为O。

(3)根据面部特征点和几何模型确定矩形特征区域,以O为基准,左右各剪切d,垂直方向各取0.5d和

1.5d的矩形区域进行裁剪。

(4)对表情子区域图像进行尺度变换为统一的尺寸,更有利于表情特征的提取。把截取的图像统一规格

为90*100的图像,实现图像的几何归一化。

面部几何模型如下图:

2.灰度归一化

灰度归一化 主要是增加图像的亮度,使图像的细节更加清楚,以减弱光线和光照强度的影响。

这里用的是image=255*imadjust(C/255,[0.3;1],[0;1]); 用此函数进行光照补偿。

具体代码如下:

C= imread(‘Image001.jpg‘);
figure(1),imshow(C);
C=double(C);
image=255*imadjust(C/255,[0.3;1],[0;1]);
figure(2),imshow(image/255);
title(‘Lighting compensation‘);%光照补偿

[x,y] = ginput(3);    %%1 left eye, 2 right eye, 3 top of nose
cos = (x(2)-x(1))/sqrt((x(2)-x(1))^2+(y(2)-y(1))^2);
sin = (y(2)-y(1))/sqrt((x(2)-x(1))^2+(y(2)-y(1))^2);
mid_x = round((x(1)+x(2))/2);
mid_y = round((y(2)+y(1))/2);
d = round(sqrt((x(2)-x(1))^2+(y(2)-y(1))^2));
rotation = atan(sin./cos)*180/pi;
img = imrotate(image,rotation,‘bilinear‘,‘crop‘); 
figure(3), imshow(img);%人脸校正

[h,w] = size(img);
leftpad = mid_x-d;
if leftpad<1
   leftpad = 1;
end
toppad =mid_y - round(0.5*d);
if toppad<1
   toppad = 1;
 end
 rightpad = mid_x + d;
 if rightpad>w
    rightpad = w;
 end
 bottompad = mid_y + round(1.5*d);
 if bottompad>h
    bottompad = h;
 end   
 I1 =[];
 I2 =[];
 I1(:,:) = img(toppad:bottompad,leftpad:rightpad);
 I2(:,:) = imresize(I1,[90 100]); 
 figure(4),imshow(I2,[]);%人脸裁剪

原文地址:https://www.cnblogs.com/curo0119/p/8421818.html

时间: 2024-11-08 21:44:14

人脸图像的几何归一化和灰度归一化的相关文章

[转载]matlab图像处理为什么要归一化和如何归一化

matlab图像处理为什么要归一化和如何归一化,一.为什么归一化1.   基本上归一化思想是利用图像的不变矩寻找一组参数使其能够消除其他变换函数对图像变换的影响.也就是转换成唯一的标准形式以抵抗仿射变换 图像归一化使得图像可以抵抗几何变换的攻击,它能够找出图像中的那些不变量,从而得知这些图像原本就是一样的或者一个系列的. 因为我们这次的图片有好多都是一个系列的,所以老师把这个也作为我研究的一个方向. 我们主要要通过归一化减小医学图片由于光线不均匀造成的干扰.2.matlab里图像数据有时候必须是

图像的几何运算

目录 1.图像的插值 2.旋转与平移变换 3.缩放与裁剪变换 4.镜像变换 @ 图像的几何运算是指引起图像几何形状发生改变的变换.与点运算不同的是,几何运算可以看成是像素在图像内的移动过程,该移动过程可以改变图像中物体对象之间的空间关系. 1.图像的插值 图像插值是指利用已知邻近像素点的灰度值来产生位置像素点的灰度值,以便由原始图像再生成具有更高分辨率的图像.插值是在不生成新的像素的情况下对原图像的像素重新分布,从而改变像素数量的一种方法.在图像放大过程中,像素也相应的增加,增加的过程就是'插值

图像的纹理特征之灰度共生矩阵

(黑灯瞎火好干事.......来源一) 由于纹理是由灰度分布在空间位置上反复出现而形成的,因而在图像空间中相隔某距离的两象素之间会存在一定的灰度关系,即图像中灰度的空间相关特性.灰度共生矩阵就是一种通过研究灰度的空间相关特性来描述纹理的常用方法. Gray-level co-occurrence matrix from an image 图像的灰度共生矩阵 灰度共生矩阵是像素距离和角度的矩阵函数,它通过计算图像中一定距离和一定方向的两点灰度之间的相关性,来反映图像在方向.间隔.变化幅度及快慢上的

opencv实现人脸识别(二) 人脸图像采集模块

这一步我们开始搭建第一个模块,用来检测到图像中的人脸位置,并将它拍下来保存在指定路径 流程图: 代码实现: import cv2 def pic(cam): # 调用笔记本内置摄像头,所以参数为0,如果有其他的摄像头可以调整参数为1,2 cam = cv2.VideoCapture(0) # 使用自带的人脸识别分类器, 其中 这个.xml文件是 识别人脸的分类器文件 # 这里我已经把这个文件放在了当前项目目录下 face_detector = cv2.CascadeClassifier('haa

OpenCV2+入门系列(四):计算图像的直方图,平均灰度,灰度方差

本篇懒得排版,直接在网页html编辑器编辑 在图像处理时,我们常常需要求出图像的直方图.灰度平均值.灰度的方差,这里给出一个opencv2+自带程序,实现这些功能. 直方图 对于直方图,使用cv::calcHist函数可以求出. 原型 void calcHist(const Mat* arrays, int narrays, const int* channels, InputArray mask, OutputArray hist, int dims, const int* histSize,

图像处理之基础---图像缩放中的一些 灰度插值算法

在图像缩放,旋转等一些图像处理中,对图像进行插值是不可缺少的一个步骤,下面对一些常用的插值算法进行介绍: 1.最近邻插值 这种插值方法是最简单的一种插值算法,图像输出的像素值的大小直接设为与其最邻近的点的大小即可,这个算法最简单,不需要多说,可以表示为 f(x,y) = g(  round(x)  ,   round(y)  ) 原图                                                                                  

图像滤镜处理算法:灰度、黑白、底片、浮雕

1 灰度图片 前文阐述过关于图片的一些基本知识,彩色照片有RGB_8888.RGB_4444.RGB_565这么几种,每一个像素的颜色值由红.绿.蓝三种 值混合而成,红绿蓝的取值分别由很多种,于是像素的颜色值也可以有很多种颜色值,这就是彩色图片的原理,而灰度照片则只有256种颜色,一般的处理方法是 将图片颜色值的RGB三个通道值设为一样,这样原本的256*256*256种颜色就只有256种了,256种颜色值就丢失了图片的彩色信息,留下的只有 亮度值,视觉上看上去就是灰色的图片. 灰度处理一般有三

使用DCGAN实现人脸图像生成

DCGAN介绍 原始的GAN网络在训练过程中生成者生成图像质量不太稳定,无法得到高质量的生成者网络,导致这个问题的主要原因是生成者与判别者使用相同的反向传播网络,对生成者网络的改进就是用卷积神经网络替代原理的MLP实现稳定生成者网络,生成高质量的图像.这个就是Deep Convolutional Generative Adversarial Network (DCGAN)的由来.相比GAN,DCGAN把原来使用MLP的地方都改成了CNN,同时去掉了池化层,改变如下: 判别器使用正常卷积,最后一层

人脸表情识别经典论文

主要是重点研究了四篇人脸表情识别的paper.分别是一篇中文中文文献:2006年清华大学朱健翔发表在<光电子·激光>上面的文章<结合Gabor特征与Adaboost的人脸表情识别>.三两篇外文文献:2014CVPR上面的文章<Facial Expression Recognitionvia a Boosted Deep Belief Network>和06年CVPR上的文章<3D Facial ExpressionRecognition Based on Prim