[bzoj1045][洛谷P2512][HAOI2008] 糖果传递

Description

有n个小朋友坐成一圈,每人有ai个糖果。每人只能给左右两人传递糖果。每人每次传递一个糖果代价为1。

Input

第一行一个正整数nn<=1‘000‘000,表示小朋友的个数.

接下来n行,每行一个整数ai,表示第i个小朋友得到的糖果的颗数.

Output

求使所有人获得均等糖果的最小代价。

Sample Input

4

1

2

5

4

Sample Output

4


想法

设第\(i\)个小朋友从他左边小朋友那里得到 \(l_i\) 个糖果,向他右边的小朋友传递 \(r_i\) 个糖果

(\(l_i\) 与 \(r_i\) 都可以为负数)

显然 \(l_i=r_{i-1}\) ,特殊地 \(l_1=r_n\)

设\(p\)为最终每个小朋友手中的糖果数

则有 \(l_i+a_i-r_i=p\) , 即 $ r_i=l_i+(a_i-p) $

而我们又有 \(l_i=r_{i-1}\)

一直递归下去有 $ r_i=l_1+(a_1-p)+(a_2-p)+(a_3-p)+…+(a_i-p) $

最终答案为 \(|r_1|+|r_2|+…+|r_n|\)

我们可以记下 \(a_i-p\) 的前缀和为 \(sum_i\)

那么 \(ans=|l_1+sum_1|+|l_1+sum_2|+…+|l_1+sum_n|\)

绝对值是个美妙的东西,\(|l_1+sum_i|\) 可想为数轴上 \(-l_i\) 与 \(sum_i\) 的距离

那么\(ans\)的最小值在 \(-l_1\) 取 \(sum_i\) 中位数时取到

求出\(sum_i\)及其中位数后计算即可。


代码

#include<cstdio>
#include<iostream>
#include<algorithm>

using namespace std;

typedef long long ll;
const int N = 1000005;

int a[N];
ll sum[N],p;
int n;

int main()
{
    scanf("%d",&n);
    for(int i=1;i<=n;i++){
        scanf("%d",&a[i]);
        p+=a[i];
    }
    p=p/n;
    sum[0]=0;
    for(int i=1;i<=n;i++)
        sum[i]=sum[i-1]+a[i]-p;

    sort(sum+1,sum+1+n);
    ll l=sum[n/2+1],ans=0; //注意:中位数为n/2+1而不是n/2
    for(int i=1;i<=n;i++)
        ans+=abs(sum[i]-l);
    printf("%lld\n",ans);

    return 0;
}

原文地址:https://www.cnblogs.com/lindalee/p/8455788.html

时间: 2024-10-10 04:20:21

[bzoj1045][洛谷P2512][HAOI2008] 糖果传递的相关文章

P2512 [HAOI2008]糖果传递&amp;&amp;P3156 [CQOI2011]分金币&amp;&amp;P4016 负载平衡问题

P2512 [HAOI2008]糖果传递 第一步,当然是把数据减去平均数,然后我们可以得出一串正负不等的数列 我们用sum数组存该数列的前缀和.注意sum[ n ]=0 假设为链,那么可以得出答案为abs( sum[ 1 ] )+abs( sum[ 2 ] )+...+abs( sum[ n ] ) 但是题目说的是环 我们设在第 k 个人处断开环成链. 那么答案为 abs( sum[ k+1 ] - sum[ k ] )+abs( sum[ k+2 ] - sum[ k ] )+...+abs(

P2512 [HAOI2008]糖果传递 - 贪心+中位数【环形均分纸牌问题】

P2512 [HAOI2008]糖果传递 Sol: 环形均分纸牌问题 考虑最基本的均分纸牌问题,相当于将环从1与n之间断开. 令\(res_i\)表示第\(i\)个人达到平均值所用步数,ave$表示糖果的平均数. 则 \(res_1=a_1-ave\) \(res_2=a_2-ave+res_1=a_1+a_2+2*ave\) \(res_3=a_3-ave+res_2=a_1+a_2+a_3-3*ave\) \(\dots\) \(res_i=a_i-ave+res_{i-1}=\sum_{j

P2512 [HAOI2008]糖果传递

题目描述 有n个小朋友坐成一圈,每人有ai个糖果.每人只能给左右两人传递糖果.每人每次传递一个糖果代价为1. 输入输出格式 输入格式: 小朋友个数n 下面n行 ai 输出格式: 求使所有人获得均等糖果的最小代价. 输入输出样例 输入样例#1: 4 1 2 5 4 输出样例#1: 4 说明 对于100%的数据 n≤106 Solution: 本题和上篇博客一样,又是一道环形均分纸牌问题,只不过本题数据比较大,注意开$long\;long$和读入优化,基本就$OK$了. 代码: 1 #include

P2512 [HAOI2008]糖果传递 题解 数学

题目描述 有n个小朋友坐成一圈,每人有ai个糖果.每人只能给左右两人传递糖果.每人每次传递一个糖果代价为1. 输入输出格式 输入格式: 小朋友个数n 下面n行 ai 输出格式: 求使所有人获得均等糖果的最小代价. 输入输出样例 输入样例#1: 复制 4 1 2 5 4 输出样例#1: 复制 4 首先,最终每个小朋友的糖果数量可以计算出来,等于糖果总数除以n,用ave表示. 假设标号为i的小朋友开始有Ai颗糖果,Xi表示第i个小朋友给了第i-1个小朋友Xi颗糖果,如果Xi<0,说明第i-1个小朋友

P2512 [HAOI2008]糖果传递 &amp; P4016 负载平衡问题

神奇的中位数定理!(名字自己起的) 两个题目都是一个问题:\(n\)个人围成一圈,每个人可以给她左右两个人金币,求最小的金币交换量使得他们的金币都一样多. 鉴于不会那些费用流,就学了神奇的数学方法.(其实蓝书里面有类似的题目) 所谓的数学方法是这样的: 设\(A_i\)为第\(i\)个人一开始持有的金币数,\(X_i\)为第\(i\)个人给她下一个人的金币量(正数说明是给人的,负数说明是别人给自己的). 那么最终的答案其实就是\(\sum_{i=1}^n |X_i|\). 那么可以列出\(n\)

bzoj1045: [HAOI2008] 糖果传递(数论)

1045: [HAOI2008] 糖果传递 题目:传送门(双倍经验3293) 题解: 一开始想着DP贪心一顿乱搞,结果就GG了 十分感谢hzwer大佬写的毒瘤数论题解: 首先,最终每个小朋友的糖果数量可以计算出来,等于糖果总数除以n,用ave表示. 假设标号为i的小朋友开始有Ai颗糖果,Xi表示第i个小朋友给了第i-1个小朋友Xi颗糖果,如果Xi<0,说明第i-1个小朋友给了第i个小朋友Xi颗糖果,X1表示第一个小朋友给第n个小朋友的糖果数量. 所以最后的答案就是ans=|X1| + |X2|

[HAOI2008] 糖果传递

1045: [HAOI2008] 糖果传递 Time Limit: 10 Sec  Memory Limit: 162 MB Submit: 4184  Solved: 2026 [Submit][Status][Discuss] Description 有n个小朋友坐成一圈,每人有ai个糖果.每人只能给左右两人传递糖果.每人每次传递一个糖果代价为1. Input 第一行一个正整数n<=987654321,表示小朋友的个数.接下来n行,每行一个整数ai,表示第i个小朋友得到的 糖果的颗数. Ou

洛谷P1450 [HAOI2008]硬币购物 动态规划 + 容斥原理

洛谷P1450 [HAOI2008]硬币购物 动态规划 + 容斥原理 1.首先我们去掉限制 假设 能够取 无数次 也就是说一开始把他当做完全背包来考虑 离线DP 预处理 复杂度 4*v 用f[ i ] 表示 空间 为 i 的方案数 答案ans 其实就是所有方案 - 所有超过限制的方案 限制指的就是题目中限制 某个硬币有几枚 然后所有超过限制的方案用容斥来做 所有超过限制的方案 要减 == -1 超过限制的方案 - 2 超过限制的方案 - 3 超过限制的方案 - 4 超过限制的方案 + 1和2 超

bzoj 1045: [HAOI2008] 糖果传递 贪心

1045: [HAOI2008] 糖果传递 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1812  Solved: 846[Submit][Status] Description 有n个小朋友坐成一圈,每人有ai个糖果.每人只能给左右两人传递糖果.每人每次传递一个糖果代价为1. Input 小朋友个数n 下面n行 ai Output 求使所有人获得均等糖果的最小代价. Sample Input 4 1 2 5 4 Sample Output 4