AI时代:推荐引擎正在塑造人类

We shape our tools and afterwards our tools shape us. ------Marshall McLuhan

麦克卢汉说:“我们塑造了工具,反过来工具也在塑造我们。”

我本人不反感AI,也相信人工智能会开创一个伟大的时代,但是我们要思考一些东西,至少知道那是什么。本人旨在让你了解当前人工智能应用最普遍的智能推荐引擎(Intelligent Recommendation Engine),其背后的设计理念,以及一些更深度的思考。关于理念,它不像技术要求太多的基础,我尽量不使用专业术语,所以本文同样适合程序员以外群体。

从“分类”说起

以大家熟悉的分类信息网为例,像58同城、赶集网。网站把现实生活中的商品、服务进行分类进行展示,比如房产、二手车、家政服务等。这些内容即是现实世界对应的抽象,我们可以很容易的找到对应关系。

我们再以求职网站为例,像智联招聘、BOSS直聘。网站按照职业把 人分类,比如程序员、厨师、设计师、数学家、物理学家等。

那么现在问题出现了,众所周知,人工智能的完美入门人才是具有数学和计算机双学位的硕士以上学历人才。那么,我们如何把这样的人分类呢?我们无法单一的将其归入到程序员或者数学家,我们无法为每一个这样的复合型人(slash)进行单独分类。

分类产生矛盾。

我们区分南方人、北方人,所以有地域歧视。我们区分亚洲人、欧洲人,所以有种族歧视。“分类”只是人类简化问题逻辑的手段,薛定谔的猫和罗素的理发师已经证明了“分类”并不正确。所以在大计算时代,我们引入“贴标签”的概念。

贴标签

AI时代是计算能力爆炸增长所带来的。在强大的计算能力面前,我们真的可以针对每个人进行“分类”,它的表现形式就是---贴标签

30岁以下、程序员、屌丝、奶爸、熬夜、不爱运动、公众号叫caiyongji、格子衬衫、机械键盘、牛仔裤……这些可以是一个程序员的标签。换个角度,“类别”反转过来服务于单独的某个人,这是在计算能力短缺的时代所无法想象的。

传统的智能推荐引擎对用户进行多维度的数据采集、数据过滤、数据分析,然后建模,而人工智能时代的推荐引擎在建立模型步骤中加入Training the models(训练、测试、验证)。

最后,推荐引擎就可以根据用户标签的权重(可以理解为对标签的打分,表示侧重点),对用户进行精准推送了。

推荐引擎属性分化

俗话是这么说的“旱的旱死,涝的涝死”,“饱汉子不知饿汉子饥”,不知道这些俗语我用的恰当不恰当。我的意思是在智能引擎的推荐下,会加强属性两极分化。

我们以程序员为例,选取编程技巧、打游戏、体育运动、熬夜、看书五个维度。经过推荐引擎的“塑造”后如下。

目前,推荐引擎的算法会将权重比较大的标签进行优先推广,这就导致原本权重大的标签得到更多的曝光次数,最终使得权重大的标签权重越来越大,而权重小的标签在长时间的被忽略状态下逐渐趋近于零。

推荐引擎行为引导

波兹曼认为,媒体能够以一种隐蔽却强大的暗示力量来“定义现实世界”。其中媒体的形式极为重要,因为特定的形式会偏好某种特殊的内容,最终会塑造整个文化的特征。这就是所谓“媒体即隐喻”的主要涵义。

由于“推荐”机制的属性分化,那些高技术含量的、专业的、科学的、真正对人又帮助的信息被更少的人接触,而那些简单的、轻松的、娱乐的、裸露的、粗俗的信息被越来越多的人接触。

我们看一下具有影响力的百度、今日头条和微博在今天(2018年1月13日10:04:xx)所推荐的内容。我删除了cookie,使用匿名session,移除我的“标签”。也就是说,下图所推荐内容对大部分人适用。

只要你好奇点击,你的tittytainment(我翻译成“愚乐”,那个三俗的译法不要再传了)属性权重就会越来越大。娱乐新闻点击过百万,科普文章点击不过百,这种现象正是推荐引擎的行为引导导致的。

不客气的说,百度、今日头条、微博对国民素质的影响是有责任的。

无关推荐(Non Relational Recommendation)

对于你从来都没思考过的事物,你可能永远都接触不到,因为你不知道求索的路径,所以有的人每个月都读与自己专业无关的书,来扩展自己的知识面。我们举个例子:

你可能会在网上搜索如何与女朋友和谐相处但你未必会搜索如何让女朋友们和谐相处,有人笑谈“贫穷限制了我的想象力”,其实不然,是你接收不到无关的推荐,你才被限制在特定的知识圈子里。

所以我提出无关推荐这个概念。

对程序员进行画像:

如图,当某个标签没有到达“程序员”的路径时,他可能永远无法触及那个标签。这时,我们推荐“无关”信息给用户,强制产生路径。

你可能会质疑,这是随机强制推荐垃圾信息吗?

其实不然,通过深度学习,我们可以进行大量的数据收集、数据分析和模型训练,我们是可以找到对某个个体无关,但会让其感兴趣信息的兴趣点。这种信息就是无关推荐的

最后

你每天接收到的“推荐”背后是各个团队经过心理学研究、行为学研究、大量计算设计的,人们正在失去深度思考、自主判断的能力。对于进步青年、斜杠青年请保持思考。谨以此文献给希望进步的你,希望你有所收获和思考。



本文欢迎注明出处的转载,但微信转载请联系公众号: caiyongji进行授权转载。

原文地址:http://blog.51cto.com/12240152/2060543

时间: 2024-11-01 16:08:47

AI时代:推荐引擎正在塑造人类的相关文章

时尚简史与AI时代

时尚,似乎是一头怪兽.五色斑斓,流光溢彩,铺天盖地而来,令人目眩神迷,情难自已:却又变幻不居,玄妙莫测,起落行迹难以捉摸. 衣衫褴褛.流落街头的"犀利哥"程国荣在接受采访时表示:"到现在也不明白当时被拍摄的照片,为什么会被人认为是时尚."想不明白的岂止是"犀利哥"一人,处在时尚大潮中的男男女女又何曾想明白过.时尚六臂三头,随时都可以改容易貌,陡然变身.谁会料到,在原始社会是奴隶受刑刑具.在法国大革命时期隐喻着断头台与死亡的Choker,竟能一跃成

AI时代的游戏革命:华为云的进击方案

玩游戏这件事,今天已经成为了我们生活中的日常.但假如我们回想一下十几年时间里游戏经历的变化,相信大家都会认同"翻天覆地"这个词绝不为过. 十几年前,笔者玩的还是小霸王和超级玛丽,到了今天PC和主机游戏的画面已经无限炸裂,手游成为随时随地可以发生的娱乐方式.电竞和游戏周边产业也几何级增长.在这些变化背后,隐藏着的其实是基础信息设施的不断进化.从PC.移动设备到云计算,每一次游戏的升级基本都与科技基础的升级保持同频. 那么到了人工智能时代,游戏当然也不会停步不前.但关于AI时代的游戏,我们

蚂蚁金服智能推荐引擎解决方案与实践

摘要:以"数字金融新原力(The New Force of Digital Finance)"为主题,蚂蚁金服ATEC城市峰会于2019年1月4日上海如期举办.金融智能专场分论坛上,蚂蚁金服人工智能部高级技术专家王志勇做了主题为<蚂蚁金服智能推荐引擎>的精彩分享. 演讲中,王志勇代表蚂蚁金服首次向公众介绍了蚂蚁金服智能推荐引擎,分享了蚂蚁金服利用人工智能和大数据能力在推荐引擎上沉淀的大量经验,并介绍了结合蚂蚁自身优势打造的.能够灵活适配各种业务场景的智能推荐引擎解决方案(A

探索推荐引擎内部的秘密,第 2 部分: 深入推荐引擎相关算法 - 协同过滤(转)

第 2 部分: 深入推荐引擎相关算法 - 协同过滤 本系列的第一篇为读者概要介绍了推荐引擎,下面几篇文章将深入介绍推荐引擎的相关算法,并帮助读者高效的实现这些算法. 在现今的推荐技术和算法中,最被大家广泛认可和采用的就是基于协同过滤的推荐方法.它以其方法模型简单,数据依赖性低,数据方便采集 , 推荐效果较优等多个优点成为大众眼里的推荐算法“No.1”.本文将带你深入了解协同过滤的秘密,并给出基于 Apache Mahout 的协同过滤算法的高效实现.Apache Mahout 是 ASF 的一个

推荐引擎内部的秘密2

转自:http://www.ibm.com/developerworks/cn/web/1103_zhaoct_recommstudy2/index.html 对2005年的创新公司来说,最重要的革命性思想可能是2004年<连线>杂志主编 Chris Anderson 提出的所谓"长尾"理论.这个理论说互联网使得过去几件流行商品通吃的局面一去不返了,现在哪怕是最不流行的东西也会有人喜欢,是小众市场的时代. 互联网的大趋势,甚至可以说是整个社会的一个大趋势,是人们面临的选择越

探索推荐引擎内部的秘密,第 1 部分: 推荐引擎初探

"探索推荐引擎内部的秘密"系列将带领读者从浅入深的学习探索推荐引擎的机制,实现方法,其中还涉及一些基本的优化方法,例如聚类和分类的应用.同时在理论讲解的基础上,还会结合 Apache Mahout 介绍如何在大规模数据上实现各种推荐策略,进行策略优化,构建高效的推荐引擎的方法.本文作为这个系列的第一篇文章,将深入介绍推荐引擎的工作原理,和其中涉及的各种推荐机制,以及它们各自的优缺点和适用场景,帮助用户清楚的了解和快速构建适合自己的推荐引擎. 信息发现 如今已经进入了一个数据爆炸的时代,

深入推荐引擎相关算法 - 协同过滤

集体智慧和协同过滤 什么是集体智慧 集体智慧 (Collective Intelligence) 并不是 Web2.0 时代特有的,只是在 Web2.0 时代,大家在 Web 应用中利用集体智慧构建更加有趣的应用或者得到更好的用户体验.集体智慧是指在大量的人群的行为和数据中收集答案,帮助你对整个人群得到统计意义上的结论,这些结论是我们在单个个体上无法得到的,它往往是某种趋势或者人群中共性的部分. Wikipedia 和 Google 是两个典型的利用集体智慧的 Web 2.0 应用: Wikip

探索推荐引擎内部的秘密

"探索推荐引擎内部的秘密"系列将带领读者从浅入深的学习探索推荐引擎的机制,实现方法,其中还涉及一些基本的优化方法,例如聚类和分类的应用.同时在理论讲解的基础上,还会结合 Apache Mahout 介绍如何在大规模数据上实现各种推荐策略,进行策略优化,构建高效的推荐引擎的方法.本文作为这个系列的第一篇文章,将深入介绍推荐引擎的工作原理,和其中涉及的各种推荐机制,以及它们各自的优缺点和适用场景,帮助用户清楚的了解和快速构建适合自己的推荐引擎. 信息发现 如今已经进入了一个数据爆炸的时代,

推荐引擎初探

"探索推荐引擎内部的秘密"系列将带领读者从浅入深的学习探索推荐引擎的机制,实现方法,其中还涉及一些基本的优化方法,例如聚类和分类的应用.同时在理论讲解的基础上,还会结合 Apache Mahout 介绍如何在大规模数据上实现各种推荐策略,进行策略优化,构建高效的推荐引擎的方法.本文作为这个系列的第一篇文章,将深入介绍推荐引擎的工作原理,和其中涉及的各种推荐机制,以及它们各自的优缺点和适用场景,帮助用户清楚的了解和快速构建适合自己的推荐引擎. 信息发现 如今已经进入了一个数据爆炸的时代,