poj 1141 Brackets Sequence(线性dp)

题意:给出一个括号串,求最短的满足要求的括号串;

思路:枚举长度,枚举起点和终点,找到匹配括号是可递推到子序列,枚举中间指针求最优解;打印时通过记忆表path存储最优解,递归求出最短序列;

#include<cstdio>
#include<cstring>
#include<algorithm>
#define INF 0x7fffffff
using namespace std;
char str[505];
int dp[505][505];
int path[505][505];
void oprint(int i,int j)
{
    if(i>j) return;
    if(i==j)
    {
        if(str[i]==‘[‘||str[i]==‘]‘)
            printf("[]");
        else printf("()");
    }
    else if(path[i][j]==-1)
    {
        printf("%c",str[i]);
        oprint(i+1,j-1);
        printf("%c",str[j]);
    }
    else{
        oprint(i,path[i][j]);
        oprint(path[i][j]+1,j);
    }
}
int main()
{
        gets(str);
        int n=strlen(str);
        if(n==0)
        {
            printf("\n");return 0;
        }
        memset(path,0,sizeof(path));
        memset(dp,0,sizeof(dp));
        for(int i=0;i<n;i++)
            dp[i][i]=1;
        for(int r=1;r<=n;r++)//递推子序列长度
        {
            for(int i=0;i<n-r;i++)//枚举起点
            {
                int j=i+r;//计算子序列的结束位置
                dp[i][j]=0x7fffffff;
                if((str[i]==‘(‘&&str[j]==‘)‘)||(str[i]==‘[‘&&str[j]==‘]‘))
                {
                    dp[i][j]=dp[i+1][j-1];
                }
                path[i][j]=-1;//放在外面,否则WA
                for(int k=i;k<j;k++)//枚举中间指针
                {
                    if(dp[i][j]>dp[i][k]+dp[k+1][j]){
                        dp[i][j]=dp[i][k]+dp[k+1][j];
                        path[i][j]=k;
                    }
                }
            }
        }
        oprint(0,n-1);
        printf("\n");
    return 0;
}
时间: 2025-01-13 04:59:05

poj 1141 Brackets Sequence(线性dp)的相关文章

POJ 1141 Brackets Sequence (线性dp 括号匹配 经典题)

Brackets Sequence Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 26407   Accepted: 7443   Special Judge Description Let us define a regular brackets sequence in the following way: 1. Empty sequence is a regular sequence. 2. If S is a re

POJ 1141 Brackets Sequence (区间dp 记录路径)

题目大意: 给出一种不合法的括号序列,要求构造出一种合法的序列,使得填充的括号最少. 思路分析: 如果只要求输出最少的匹配括号的数量,那么就是简单的区间dp dp[i][j]表示 i - j 之间已经合法了最少添加的括号数. 转移 就是 dp[i] [j] = min  (dp[i+1][j]+1 , dp[ i+ 1] [ k -1 ] + dp[k+1] [j] (i k 位置的括号匹配)) 其次我们要记录路径,你发现  如果 dp [i] [j] 是由 dp [i+1] [j] 转移过来的

uva1626 poj 1141 Brackets Sequence 区间dp 打印路径

// poj 1141 Brackets Sequence // 也是在紫书上看的一题,uva就是多了一个t组数据. // 经典区间dp // dp(i,j)表示区间[i,j]内所需要增加的括号数目 // 则分为两种情况 // 一种是s[i]和s[j]是匹配的则 // dp[i][j] = min(dp[i][j],dp[i+1][j-1]) // 另外一种情况是不匹配 // dp[i][j] = min(dp[i][j],dp[i][k]+dp[k+1][j]){i<k<j}; // 但是无

poj 1141 Brackets Sequence (区间DP)

Brackets Sequence Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 25893   Accepted: 7295   Special Judge Description Let us define a regular brackets sequence in the following way: 1. Empty sequence is a regular sequence. 2. If S is a re

poj 1141 Brackets Sequence 区间dp,分块记录

Brackets Sequence Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 35049   Accepted: 10139   Special Judge Description Let us define a regular brackets sequence in the following way: 1. Empty sequence is a regular sequence. 2. If S is a r

[ACM] POJ 1141 Brackets Sequence (区间动态规划)

Brackets Sequence Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 25087   Accepted: 7069   Special Judge Description Let us define a regular brackets sequence in the following way: 1. Empty sequence is a regular sequence. 2. If S is a re

POJ #1141 - Brackets Sequence - TODO: POJ website issue

A bottom-up DP. To be honest, it is not easy to relate DP to this problem. Maybe, all "most"\"least" problems can be solved using DP.. Reference: http://blog.sina.com.cn/s/blog_8e6023de01014ptz.html There's an important details to AC:

区间DP [POJ 1141] Brackets Sequence

Brackets Sequence Description Let us define a regular brackets sequence in the following way: 1. Empty sequence is a regular sequence. 2. If S is a regular sequence, then (S) and [S] are both regular sequences. 3. If A and B are regular sequences, th

POJ 1141 Brackets Sequence (区间DP)

Description Let us define a regular brackets sequence in the following way: 1. Empty sequence is a regular sequence. 2. If S is a regular sequence, then (S) and [S] are both regular sequences. 3. If A and B are regular sequences, then AB is a regular