nand flash的实现(摘,参考)

首先明确一下我们的编程步骤。

(1)、加电在nand_flash加载boot.s中4K以内的程序。这4k将自动拷贝到SRAM(片内RAM)执行。

(2)、我们需要用这4k的程序实现nand-flash中4K以后的程序的拷贝(当然,拷贝到SDRAM基址为0x30000000处)继续执行(main.o部分的程序)。对于SDRAM的初始化和Watchdog的禁用已经在前一个实验中使用到了,这里就不再详细叙述。主要来看一下nand-flash的初始化和使用。

查阅一下s3c2440的空间布局。查看手册图Figure 5-1. S3C2440A Memory Map after Reset一目了然。

有8个banks— Total 8 memory banksSix memory banks for ROM, SRAM, etc.Remaining two memory banks for ROM, SRAM, SDRAM, etc .

每个bank拥有128M空间。当访问bankx时,对应的地址范围是128*n 到 128*(1+n)tq2440使用了64M的nand flash和64M的SDROMNAND Flash不对应任何bank,他是通过几组寄存器来访问的;上电以后,nand flash开始的4k数据被自动的复制到芯片内部一个称为steppingstone的RAM上。steppingstore的映射地址为0,上面的4k完成初始化工作;SDRAM则使用bank6,起始位置为0x30000000

该实验中我们将使用SDRAM的bank6实验目的:

(1)、mem controller的原理和工作过程

(2)、bank的使用

(3)、nand flash的读写控制

(4)、启动代码流程分析

在实际编程中,uboot和vivi都是绝佳的参考源码,我这里参考的是vivi的代码。

vivi已经上传到新浪共享:http://ishare.iask.sina.com.cn/f/11353581.html

datasheet上关于启动原理的介绍:
Bank0:The data bus of BANK0 (nGCS0) should be configured with a width as one of 16-bit and 32-bit ones. Because theBANK0 works as the booting ROM bank (map to 0x0000_0000), the bus width of BANK0 should be determinedbefore the first ROM access, which will depend on the logic level of OM[1:0] at Reset.

下面小结一下对nand flash控制器的操作过程.

s3c2440对nandflash读写操作寄存器配置的流程:

s3c2440对nandflash读写操作寄存器配置的流程:

1.初始化

(1)NFCONT= (1<<0) //enable NAND flash controller

(2)NFCONT|= (1<<0)//chip disable

2.复位

(1)NFCONT&= ~(1<<1) //chip enable

(2)NFCMD= 0xff; //reset command

(3)while(!(NFSTAT& BUSY))等待NAND flashmemory ready to operate

3.读函数

(1)NFCONT&= ~(1<<1)//chip enable

(2)NFSTAT|= (1<<2) //NAND_CLEAR_RB ,RnBtransition is detected

(3)NFCMD= 0; //READ0,读上半叶

(4)//Write Address

NFADDR= i & 0xff;

NFADDR= (i >> 9) & 0xff;

NFADDR= (i >> 17) & 0xff;

NFADDR= (i >> 25) & 0xff;

(5)while(!(NFSTAT&(1<<0)) ); //NAND_DETECT_RB,等待NANDflash memory ready to operate

(6)*buf= (NFDATA & 0xff); //读数据线

(7)NFCONT|= (1<<1)//chip disable

用到的nand flash初始化读操作源码:

1 /*在第一次实用NAND Flash前,复位一下NAND Flash */
2  void nand_flash_reset()
3 {
4 NAND_CHIP_ENABLE;
5 NFCMD = 0xff; //reset command
6   wait_idle();
7 }
8
9  /*初始化NAND Flash */
10  void nand_flash_init()
11 {
12 //vivi init
13   int i = 0;
14 NFCONF = ( (7<<12)|(7<<8)|(7<<4)|(0<<0) );
15 NFCONT = ( (1<<4)|(0<<1)|(1<<0) );// Active low CE Control
16   NFSTAT = (0x6);//RnB Clear
17   NFCMD = 0xff; //reset command
18   for(i = 0; i < 10; i++)
19 ;
20 wait_idle();
21 /*
22 //----------------------------------------------------------------
23 // following is the copy module
24 //----------------------------------------------------------------
25 NFCONT |= 0x2;//@ Flash Memory Chip Disable
26 //----------------------------------------------------------------
27 @ Flash Memory Chip Disable
28 @ get read to call C functions (for nand_read())
29 @ copy vivi to RAM
30 ldr r0, =VIVI_RAM_BASE
31 mov r1, #0x0
32 mov r2, #0x20000
33 bl nand_read_ll
34 //---------------------------------------------------------------
35 */
36 /*
37 NFCONT = (1<<0);
38 NAND_CHIP_DISABLE;
39 nand_flash_reset();
40 */
41 }
42
43  #define BUSY 1
44 inline void wait_idle(void)
45 {
46 while(!(NFSTAT & BUSY));
47 NFSTAT |= BUSY;
48 }
49
50  #define NAND_SECTOR_SIZE 512
51  #define NAND_BLOCK_MASK (NAND_SECTOR_SIZE - 1)
52
53  /* low level nand read function */
54  int nand_flash_read(unsigned char *buf, unsigned long start_addr, int size)
55 {
56 int i, j;
57
58 if ((start_addr & NAND_BLOCK_MASK) || (size & NAND_BLOCK_MASK)) {
59 return -1; /* invalid alignment */
60 }
61
62 NAND_CHIP_ENABLE;
63
64 for(i=start_addr; i < (start_addr + size);) {
65 /*debug*/
66 (*(volatile unsigned long *)0x56000010) = 0x00015400;
67 (*(volatile unsigned long *)0x56000014) = 0x00000000;
68 /*debug*/
69 /* READ0 */
70 NAND_CLEAR_RB;
71 NFCMD = 0;
72
73 /* Write Address */
74 NFADDR = i & 0xff;
75 NFADDR = (i >> 9) & 0xff;
76 NFADDR = (i >> 17) & 0xff;
77 NFADDR = (i >> 25) & 0xff;
78
79 NAND_DETECT_RB;
80
81 for(j=0; j < NAND_SECTOR_SIZE; j++, i++) {
82 *buf = (NFDATA & 0xff);
83 buf++;
84 }
85 /*debug*/
86 if(i >= 512)
87 {
88 for(j = 0; j < 2048; j++)
89 ;
90 (*(volatile unsigned long *)0x56000014) &= (1 << 5) & (1 << 6);
91 for(j = 0; j < 2048; j++)
92 ;
93 }
94 /*debug*/
95 }
96 NAND_CHIP_DISABLE;
97 return 0;
98 }

在sram执行的启动汇编代码:

1 @----------------------------------------------------
2 @ boot.s
3 @ yeven @2010.20.28
4 @----------------------------------------------------
5 .text
6 .global _start
7  _start:
8 ldr sp,=4096
9 bl disable_wd @关闭看门狗
10 bl memsetup @初始化SDRAM
11 bl nand_flash_init @初始化nand-flash
12
13 @下面调用 nand_flash_read,它需要三个参数:目标地址,源地址,数据长度
14 ldr r0,=0x30000000 @SDRAM新的起始位置
15 mov r1,#4096 @main.o在nand-flash中的偏移,即数据起始位置
16 mov r2,#1024 @复制长度
17 bl nand_flash_read @调用vivi代码中的拷贝函数
18
19
20 bl led_on_s
21 ldr pc, = set_sp @设置堆栈,进入main.o执行
22  set_sp:
23 ldr sp,=0x34000000 @设置堆栈栈顶指针
24 ldr lr,=halt_loop @设置主函数返回地址
25 ldr pc,=main @执行主函数
26
27  halt_loop:
28 b halt_loop
29
30  led_on_s:
31 ldr r0,=0x56000010
32 mov r1,#0x00000400
33 str r1,[r0]
34 ldr r0,=0x56000014
35 mov r1,#0x00000000
36 str r1,[r0]

主函数执行代码,这一段将在sdram-0x30000000执行.他只是不停的闪灯:

1 /*
2 * mem-con.c yeven @2010.10.27
3 * learn to use the sdram,control the memory and memory map
4 * the main program locate at boot.s
5 * we just light the four leds to test the result.
6 */
7
8  //Register for the led
9  #define GPBCON (*(volatile unsigned long *)0x56000010)
10 #define GPBDAT (*(volatile unsigned long *)0x56000014)
11
12 //led-data register value(GPB5-GPB8)
13 #define LED0_ON (1 << (5*2))
14 #define LED1_ON (1 << (6*2))
15 #define LED2_ON (1 << (7*2))
16 #define LED3_ON (1 << (8*2))
17 #define GPB_ON(n) (~(1 << n))
18 #define GPB_OFF(n) (1 << n)
19
20 void delayms(unsigned int n)
21 {
22 int i = 0;
23 for(i = 0; i < 10240*n; i++)
24 ;
25 }
26
27 int main()
28 {
29 GPBCON |= (LED0_ON | LED1_ON | LED2_ON | LED3_ON); //led0-4
30 while(1)
31 {
32 GPBDAT |= (GPB_ON(5) | GPB_ON(6) | GPB_ON(7) | GPB_ON(8));
33 delayms(1);
34 GPBDAT &= (GPB_OFF(5) & GPB_OFF(6) & GPB_OFF(7) & GPB_OFF(8));
35 delayms(1);
36 }
37
38 return 0;
39 }
40

编译的makfile和gnu ld文件:

SECTIONS
{
first 0x00000000: {boot.o init.o}
second 0x30000000: AT(4096){nand-flash-con.o}
}

1 nand-flash-con:init2.c init.h nand-flash-con.c boot.s
2 arm-linux-gcc -c -o boot.o boot.s
3 arm-linux-gcc -c -o init.o init2.c #init.h
4 arm-linux-gcc -c -o nand-flash-con.o nand-flash-con.c
5 arm-linux-ld -Tnand.lds boot.o init.o nand-flash-con.o -o nand-flash-con-tmp.o
6 arm-linux-objcopy -O binary -S nand-flash-con-tmp.o nand-flash-con
7 arm-linux-objdump -D -b binary -m arm nand-flash-con > ttt.s
8 clean:
9 rm *.o
10 rm nand-flash-con

时间: 2024-10-25 11:01:51

nand flash的实现(摘,参考)的相关文章

nuc900 nand flash mtd 驱动

nuc900 nand flash mtd 驱动,请参考! /* * Copyright © 2009 Nuvoton technology corporation. * * Wan ZongShun <[email protected]> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License

u-boot分析(九)----nand flash初始化|nand flash读写分析

u-boot分析(九) 上篇博文我们按照210的启动流程,分析到了初始化串口,由于接下来的取消存储保护不是很重要,所以我们今天按照u-boot的启动流程对nand flash初始化进行分析. 今天我们会用到的文档: 1.        2440芯片手册:http://download.csdn.net/detail/wrjvszq/8358949 2.        6410芯片手册:http://download.csdn.net/detail/wrjvszq/8358965 3.      

Nand Flash原理(二)

K9F2G08U0B的存储阵列 图 2-1 K9F2G08U0B的存储阵列 由图2-1,我们可以知道:K9F2G08U0B的一页为(2K+64)字节(2K 表示的是 main 区容量,64表示的是 spare 区容量),它的一块为 64 页,而整个设备包括了2048个块.这样算下来一共有 2112M 位容量,如果只算 main 区容量则有256M 字节(即 256M×8 位). 要实现用 8 个 IO 口来要访问这么大的容量,如图 2-1 所示:K9F2G08U0A 规定了用 5 个周期来实现.

怎么看时序图--nand flash的读操作详解(转载)

出处:http://blog.chinaunix.net/uid-28852942-id-3992727.html这篇文章不是介绍 nand flash的物理结构和关于nand flash的一些基本知识的.你需要至少了解 你手上的 nand flash的物理结构和一些诸如读写命令 操作的大概印象,你至少也需要看过 s3c2440中关于nand flash控制寄存器的说明. 由于本人也没有专门学过这方面的知识,下面的介绍也是经验之谈. 这里 我用的 K9F2G08-SCB0 这款nand flas

nand Flash原理

6.1.3) Block 块 一个 Nand Flash (的 chip,芯片) 由很多个块(Block)组成,块的大小一般是 128KB, 256KB, 512KB,此处是 128KB.其他的小于 128KB 的,比如 64KB,一般都是下面将要介绍到的small block的Nand Flash. 块 Block,是Nand Flash的擦除操作的基本/最小单位. 6.1.4) Page 页 每个块里面又包含了很多页(page) .每个页的大小,对于现在常见的Nand Flash多数是2KB

镁光256Gb NAND Flash芯片介绍

总体概述 该芯片是一款典型的大容量NAND Flash存储颗粒,支持Open NAND Flash Interface (ONFI) 2.1的接口标准,采用ONFI NANDFlash的操作协议.该芯片采用Multiple-level Cell (MLC)技术,根据不同的容量,一个芯片内部封装了多个DIE(LUN),每个DIE由两个Plane构成,一个Plane可以分成2048个Block,每个Block由256页组成,一个页的大小为8KB+448B的组织结构方式. 在性能方面,一个Page页的

实验四--nand flash的使用

一.环境和编译器 开发板:jz2440 系统:ubuntu12.04 编译器:gcc 二.验证代码 1.head.S 1 @****************************************************************************** 2 @ File:head.s 3 @ 功能:设置SDRAM,将程序复制到SDRAM,然后跳到SDRAM继续执行 4 @auther:hulig 5 @*********************************

块设备驱动之NAND FLASH驱动程序

转载请注明出处:http://blog.csdn.net/ruoyunliufeng/article/details/25240909 一.框架总结 二.硬件原理 相比于nor flash,我们可以清楚的看出引脚少了很多,主要是输入输出引脚进行了复用.现在我说下各引脚的用途. a.LDATA0~LDATA7这8个引脚为输入输出引脚.命令.地址.数据的传输都是由这8个引脚实现的(引脚复用,节约引脚). b.RnB:此引脚用来判忙.因为命令.数据.地址发出去和收到时候不能立刻就完成,需要一个时间.此

u-boot-2014.10移植第21天----添加nand flash命令支持(三)

硬件平台:tq2440 开发环境:Ubuntu-3.11 u-boot版本:2014.10 本文允许转载,请注明出处:http://blog.csdn.net/fulinus 虽说nand flash读写操作是可以了,但是我使用nand markbad命令将一个块标记为坏块时,再用nand scrub命令恢复出厂设置时,却出现了下面的错误: nand0: MTD Erase failure: -5 说明我们的nand flash移植是不完全正确的. 下面查找原因 在文件drivers/mtd/n