快速幂【codevs】1497 取余运算

2014-10-02

20:34:27

时间限制: 1 s

空间限制: 128000 KB

题目描述 Description

输入b,p,k的值,编程计算bp mod k的值。其中的b,p,k*k为长整型数(2^31范围内)。

输入描述 Input Description

b p k

输出描述 Output Description

输出b^p mod k=?

=左右没有空格

样例输入 Sample Input

2  10  9

样例输出 Sample Output

2^10 mod 9=7

分析

赤裸裸的快速幂

a^1=a;

a^b(b为偶数)=a^b/2*a^b/2;

a^b(b为奇数)=a^b/2*a^b/2*a;

所以时间复杂度为O(logn);

 1 # include<cstring>
 2 # include<cstdio>
 3 # include<algorithm>
 4 # include<iostream>
 5 using namespace std;
 6 typedef unsigned long long LL;
 7 LL a,b,c;
 8 LL mod(LL a,LL b,LL c){
 9     LL ans;
10     if(b==1)return a%c;
11     else if(b%2==0) {ans=mod(a,b/2,c);return ans*ans%c;}
12     else if(b%2==1) {ans=mod(a,b/2,c);return ans*ans*a%c;}
13 }
14 int main(){
15     cin>>a>>b>>c;
16     cout<<a<<"^"<<b<<" "<<"mod"<<" "<<c<<"="<<mod(a,b,c)%c;
17     return 0;
18 }//b^p mod k=?
时间: 2024-10-09 20:08:41

快速幂【codevs】1497 取余运算的相关文章

codevs 1497取余运算

1497 取余运算 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamon 题目描述 Description 输入b,p,k的值,编程计算bp mod k的值.其中的b,p,k*k为长整型数(2^31范围内). 输入描述 Input Description b p k 输出描述 Output Description 输出b^p mod k=? =左右没有空格 样例输入 Sample Input 2  10  9 样例输出 Sample Output 2^10 mod

Codevs 1497 取余运算== 洛谷P 1226

时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond 题目描述 Description 输入b,p,k的值,编程计算bp mod k的值.其中的b,p,k*k为长整型数(2^31范围内). 输入描述 Input Description b p k 输出描述 Output Description 输出b^p mod k=? =左右没有空格 样例输入 Sample Input 2  10  9 样例输出 Sample Output 2^10 mod 9=7 1

1497 取余运算

1497 取余运算 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题解 查看运行结果 题目描述 Description 输入b,p,k的值,编程计算bp mod k的值.其中的b,p,k*k为长整型数(2^31范围内). 输入描述 Input Description b p k 输出描述 Output Description 输出b^p mod k=? =左右没有空格 样例输入 Sample Input 2  10  9 样例输出 Sample Outp

Luogu P1226 取余运算||快速幂(数论,分治)

P1226 取余运算||快速幂 题目描述 输入b,p,k的值,求b^p mod k的值.其中b,p,k*k为长整型数. 输入输出格式 输入格式: 三个整数b,p,k. 输出格式: 输出"b^p mod k=s" s为运算结果 输入输出样例 输入样例#1: 2 10 9 输出样例#1: 2^10 mod 9=7 这是一道很有趣的水题,如果知道公式. 一般求解会溢出,导致答案错误. 这里介绍取模的一个公式: a*b%k=(a%k)*(b%k)%k. 在我们这道题中是b^p = (b^(p/

洛谷——P1226 取余运算||快速幂

P1226 取余运算||快速幂 题目描述 输入b,p,k的值,求b^p mod k的值.其中b,p,k*k为长整型数. 输入输出格式 输入格式: 三个整数b,p,k. 输出格式: 输出“b^p mod k=s” s为运算结果 输入输出样例 输入样例#1: 复制 2 10 9 输出样例#1: 复制 2^10 mod 9=7 快速幂取膜版 #include<cstdio> #include<cstring> #include<iostream> #include<al

luogu P1226 取余运算||快速幂

题目描述 输入b,p,k的值,求b^p mod k的值.其中b,p,k*k为长整型数. 输入输出格式 输入格式: 三个整数b,p,k. 输出格式: 输出“b^p mod k=s” s为运算结果 输入输出样例 输入样例#1: 2 10 9 输出样例#1: 2^10 mod 9=7 快速幂,随手取膜 #include<cstdio> #include<iostream> using namespace std; int b,p,k; #define LL long long LL q_

通过程序了解快速幂和模取幂运算的优化

建议先看第三个有解释的程序. 快速幂a^b 1 #include <stdio.h> 2 #include <stdlib.h> 3 4 int main() 5 { 6 long a,b,result=1; 7 //a^b 8 scanf("%ld%ld",&a,&b); 9 while (b) 10 { 11 if ((b & 1)==1) 12 result=result*a; 13 a=a*a; 14 b>>=1; 1

为什么Java的hash表的长度一直是2的指数次幂?为什么这个(hash&amp;(h-1)=hash%h)位运算公式等价于取余运算?

1.什么是hash表? 答:简单回答散列表,运算在hash结构散列(分散)存放. 2.如何散列排布,如果均匀排布? 答:取余运算 3.Java中如何实现? 答:hash&(h-1) 4.为什么hash&(h-1)=等价于hash%h java的h(表长)一定是2的指数次幂,2的指数次幂2n 2n的结果:一定长这样10000...(n个0) 2n-1的结果:一定这样1111(n-1)个1 举个例子: 当h=16,对应的二进制:00010000 h-1=15,对应的二进制:00001111 可

【分治】取余运算

问题 E: [分治]取余运算 时间限制: 1 Sec  内存限制: 128 MB提交: 16  解决: 6[提交][状态][讨论版] 题目描述 输入b,p,k的值,求bp mod k的值.其中b,p,k*k为长整型数. 输入 三个整数,分别为b,p,k的值 输出 bp mod k 样例输入 2 10 9 样例输出 2^10 mod 9=7 提示 解题思路:分治,顾名思义,把一个大问题分解为多个小问题. 这里有一个公式,利用这个公式通过递归求得. 代码: #include <iostream>