Google发布机器学习平台Tensorflow游乐场~带你玩神经网络(转载)

Google发布机器学习平台Tensorflow游乐场~带你玩神经网络

原文地址:http://f.dataguru.cn/article-9324-1.html>

摘要: 昨天,Google发布了Tensorflow游乐场。Tensorflow是Google今年推出的机器学习开源平台。而有了Tensorflow游乐场,我们在浏览器中就可以训练自己的神经网络,还有酷酷的图像让我们更直观地了解神经网络的工作原理。今 ...


网络 工具 机器学习 神经网络 Tensorflow

昨天,Google发布了Tensorflow游乐场。Tensorflow是Google今年推出的机器学习开源平台。而有了Tensorflow游乐场,我们在浏览器中就可以训练自己的神经网络,还有酷酷的图像让我们更直观地了解神经网络的工作原理。今天,就让硅谷周边带你一起去Tensorflow游乐场快乐地玩耍吧!

昨天,Google深度学习部门Google Brain的掌门人,也是Google里受万众景仰的神级别工程师Jeff Dean,在Google Plus上发布了Tensorflow游乐场的消息:

于是小伙伴们都十分激动地去Tensorflow的网站上玩神经网络了!游乐场的地址是:http://playground.tensorflow.org。让我们快点一起去看看游乐场里有哪些好玩的东东吧。

一打开网站,就看见上面的标语:

“在你的浏览器中就可以玩神经网络!不用担心,怎么玩也玩不坏哦!”

这简直太令人振奋了!面对这么多可以随便点的按钮,咱们从哪儿开始呢?

首先让我们来看看数据。在这个游乐场中,我们有4种不同形态的数据可以玩:

每组数据,都是不同形态分布的一群点。每一个点,都与生俱来了2个特征:x1和x2,表示点的位置。而我们数据中的点有2类:橙色和蓝色。我们的神经网络的目标,就是通过训练,知道哪些位置的点是橙色、哪些位置的点是蓝色。

如果橙色是橙子,蓝色是蓝莓。假设我们有2000个散落在各处的橙子和蓝莓。前1000个,我们知道坐标(1,1)的是蓝莓,(2,2)的是橙子,(0.5,0.5)的是蓝莓等等。我们要用这些信息来训练我们的神经网络,让它能够准确地预测出后1000个哪些是橙子、哪些是蓝莓。

看上面的4组数据,我们会发现,前3中都能相对简单地区分开,而最后一组螺旋数据会是最难的。

Tensorflow游乐场中的数据十分灵活。我们可以调整noise(干扰)的大小,还可以改变训练数据和测试数据的比例多少。下图是不同noise的数据分布。

当我们把每一个数据点的信息喂给机器学习系统时,我们需要做feature extraction,也就是特征提取。如果我们真的是在区分蓝莓和橙子的话,大小、颜色等等都会是我们的特征。而这里,每一个点都有x1和x2两个特征。除此之外,由这两个特征还可以衍生出许多其他特征:

抽象来说,我们的机器学习classifier(分类器)其实是在试图画一条或多条线。如果我们能够100%正确地区分蓝色和橙色的点,蓝色的点会在线的一边,橙色的会在另一边。

上面这些图其实非常的直观。第一张图中,如果x1作为我们的唯一特征,我们其实就是在画一条和x1轴垂直的线。当我们改变参数时,其实就是在将这条线左右移动。其他的特征也是如此。

很容易可以看出,我们需要智能地结合这其中一种或多种的特征,才能够成功地将蓝色点和橙色点分类。这样的feature extraction,其实往往是机器学习应用中最难的部分。好在我们有神经网络,它能够帮我们完成大部分的任务。

如果我们选定x1和x2作为特征,我们神经网络的每一层的每个神经元,都会将它们进行组合,来算出结果:

而下一层神经网络的神经元,会把这一层的输出再进行组合。组合时,根据上一次预测的准确性,我们会通过back propogation给每个组合不同的weights(比重)。这里的线越粗,就表示比重越大:

下面就让我们用最难的螺旋形数据,来试试这个神经网络的表现吧!

在神经网络出现前,我们往往会竭尽所能地想出尽可能好的特征,把它们全都喂给系统。而系统会是个十分浅的系统,往往只有一层。用这样的方法来完成分类。

让我们先来实验传统的方法。在这里,我们将所有能够想到的7个特征都输入系统,并选择只有1层的神经网络:

最后的结果是这样的,可以看出我们的单层神经系统几乎完美地分离出了橙色点和蓝色点:

接下来,让我们来体验神经网络真正的魔法。神经网络最大的魔力,就在于我们根本不需要想出各种各样的特征,用来输入给机器学习的系统。我们只需要输入最基本的特征x1, x2, 只要给予足够多层的神经网络和神经元,神经网络会自己组合出最有用的特征。

在这次试验中,我们只输入x1, x2,而选择1个6层的,每层有8个神经元的神经网络:

最后的结果是这样的。我们发现,通过增加神经元和神经网络的层数,即使没有输入许多特征,我们也能够成功地分类:

神经网络的伟大之处就在于此。当我们在解决分类橙色点和蓝色点这样的简单问题时,想出额外的特征似乎并不是难事。但是,当我们要处理的问题越来越复杂,想出有用的特征就变成了最最困难的事。比如说,当我们需要识别出哪张图片是猫,哪张图片是狗时,哪些特征是真正有效的呢?

而当我们有了神经网络,我们的系统自己就能学习到哪些特征是有效的、哪些是无效的,这就大大提高了我们解决复杂机器学习问题的能力,简直是太酷啦!

看了以上的文章,你是不是对神经网络有了更直观的认识呢?好奇的小伙伴们,欢迎去http://playground.tensorflow.org/自己试试看,真的非常好玩!

作者简介

硅谷周边,本科毕业于Carnegie Mellon University(卡耐基梅隆大学),主修电子与计算机工程和机器人。先后在苹果(Macintosh Systems, iPod)和Google(Android, Google Glass)工作。现在是Google的一名软件工程师。

来自为知笔记(Wiz)

时间: 2024-10-24 09:24:58

Google发布机器学习平台Tensorflow游乐场~带你玩神经网络(转载)的相关文章

Google发布机器学习术语表 (包括简体中文)

Google 工程教育团队已经发布了多语种的 Google 机器学习术语表,该术语表中列出了一般的机器学习术语和 TensorFlow 专用术语的定义.语言版本包括西班牙语,法语,韩语和简体中文. 查阅中文版术语表: https://developers.google.com/machine-learning/crash-course/glossary?hl=zh-cn 原文地址:https://www.cnblogs.com/jacen789/p/8647601.html

机器学习与Tensorflow(5)——循环神经网络、长短时记忆网络

1.循环神经网络的标准模型 前馈神经网络能够用来建立数据之间的映射关系,但是不能用来分析过去信号的时间依赖关系,而且要求输入样本的长度固定 循环神经网络是一种在前馈神经网络中增加了分亏链接的神经网络,能够产生对过去数据的记忆状态,所以可以用于对序列数据的处理,并建立不同时段数据之间的依赖关系 循环神经网络是一类允许节点连接成有向环的人工神经网络.如下图: 2.循环神经网络与递归神经网络 从广义上说,递归神经网络可以分为结构递归神经网络和时间递归神经网络 从狭义上说,递归神经网络可以通常就是指结构

带你玩转Visual Studio——结局汇总

感谢 这一系列文章陆陆续续写了一个月,也差不多可以告一个段落了.感谢读者们一直以来对我关注和支持!现将这一系列文章在这做一个汇总,以方便大家查阅.若是初学者,建议按顺序阅读. 系列文章目录 带你玩转Visual Studio--开篇介绍 带你玩转Visual Studio--带你新建一个工程 带你玩转Visual Studio--带你了解VC++各种类型的工程 带你玩转Visual Studio--带你高效开发 带你玩转Visual Studio--带你高效管理代码 带你玩转Visual Stu

TensorFlow【机器学习】:如何正确的掌握Google深度学习框架TensorFlow(第二代分布式机器学习系统)?

本文标签:   机器学习 TensorFlow Google深度学习框架 分布式机器学习 唐源 VGG REST   服务器 自 2015 年底开源到如今更快.更灵活.更方便的 1.0 版本正式发布,由 Google 推出的第二代分布式机器学习系统 TensorFlow一直在为我们带来惊喜,一方面是技术层面持续的迭代演进,从分布式版本.服务框架 TensorFlow Serving.上层封装 TF.Learn 到 Windows 支持.JIT 编译器 XLA.动态计算图框架 Fold 等,以及

横向对比三大分布式机器学习平台:Spark、PMLS、TensorFlow

2017-08-04 11:47 程序设计/谷歌/对比 选自muratbuffalo 作者:Murat Demirbas 参与:Panda 分布式机器学习是机器学习领域的一大主要研究方向.近日纽约州立大学布法罗分校计算机科学与工程教授.Petuum Inc. 顾问 Murat Demirbas 和他的两位学生一起发表了一篇对比现有分布式机器学习平台的论文,对 Spark.PMLS 和 TensorFlow 等平台的架构和性能进行了比较和介绍.Murat Demirbas 教授在论文公布后还发表了

谷歌开源第二代机器学习系统 TensorFlow

深度学习对计算机科学而言,是有相当深远的影响的.它让尖端科技研究.开发数千万人日常使用的产品成为可能.Research宣布推出第二代机器学习系统TensorFlow,针对先前的DistBelief的短板有了各方面的加强,更重要的是,它是开源的,任何人都可以用. 谷歌内部深度学习结构DistBelief开发于2011年,它让谷歌能够针对数据中心的数千核心,构建更为大型的神经网络和规模训练,典型的应用像是提升谷歌应用中的语音识别能力,以及为谷歌搜索加入图片搜索功能. 不过DistBelief存在一些

AI - Google的机器学习速成课程

Google的机器学习速成课程 机器学习速成课程(MLCC,machine-learning crash-course):https://developers.google.com/machine-learning/crash-course/ 机器学习术语表:https://developers.google.com/machine-learning/glossary/ 基本全程中文,程共25节,大约15小时,包含40多项练习,有对算法实际运用的互动直观展示,可以更容易地学习和实践机器学习概念.

Google 发布 Android 性能优化典范

2015年伊始,Google发布了关于Android性能优化典范的专题, 一共16个短视频,每个3-5分钟,帮助开发者创建更快更优秀的Android App.课程专题不仅仅介绍了Android系统中有关性能问题的底层工作原理,同时也介绍了如何通过工具来找出性能问题以及提升性能的建议.主要从三个 方面展开,Android的渲染机制,内存与GC,电量优化.下面是对这些问题和建议的总结梳理. 0)Render Performance 大多数用户感知到的卡顿等性能问题的最主要根源都是因为渲染性能.从设计

Google 发布的15个 Android 性能优化典范

2015年伊始,Google发布了关于Android性能优化典范的专题,一共16个短视频,每个3-5分钟,帮助开发者创建更快更优秀的Android App.课程专题不仅仅介绍了Android系统中有关性能问题的底层工作原理,同时也介绍了如何通过工具来找出性能问题以及提升性能的建议.主要从三个方面展开,Android的渲染机制,内存与GC,电量优化.下面是对这些问题和建议的总结梳理. 0)Render Performance 大多数用户感知到的卡顿等性能问题的最主要根源都是因为渲染性能.从设计师的