分布式事务解决方案(转载)

目前的应用系统,不管是企业级应用还是互联网应用,最终数据的一致性是每个应用系统都要面临的问题,随着分布式的逐渐普及,数据一致性更加艰难,但是也很难有银弹的解决方案,也并不是引入特定的中间件或者特定的开源框架能够解决的,更多的还是看业务场景,根据场景来给出解决方案。根据笔者最近几年的了解,总结了几个点,更多的应用系统在编码的时候,更加关注数据的一致性,这样系统才是健壮的。

一、基础理论

目前关于事务的几大理论包括:ACID事务特性,CAP分布式理论,以及BASE等。ACID在数据库事务中体现CAP和BASE则是分布式事务的理论,结合业务系统,例如订单管理,例如仓储管理等,可以借鉴这些理论,从而解决问题。

1、ACID 特性

2、CAP特性

  • C(一致性)一致性是指数据的原子性,在经典的数据库中通过事务来保障,事务完成时,无论成功或回滚,数据都会处于一致的状态,在分布式环境下,一致性是指多个节点数据是否一致;
  • A(可用性)服务一直保持可用的状态,当用户发出一个请求,服务能在一定的时间内返回结果;
  • P(分区容忍性)在分布式应用中,可能因为一些分布式的原因导致系统无法运转,好的分区容忍性,使应用虽然是一个分布式系统,但是好像一个可以正常运转的整体

3、BASE特性

  • BA: Basic Availability 基本业务可用性;
  • S: Soft state 柔性状态;
  • E: Eventual consistency 最终一致性;

二、最终一致性的常用做法

1、单数据库事务

如果应用系统是单一的数据库,那么这个很好保证,利用数据库的事务特性来满足事务的一致性,这时候的一致性是强一致性的。对于java应用系统来讲,很少直接通过事务的start和commit以及rollback来硬编码,大多通过spring的事务模板或者声明式事务来保证;

2、多数据库事务

针对多数据库事务可以根据二阶段提交协议,采用spring 3.0 + Atomikos + JTA进行支持;

3、基于事务型消息队列的最终一致性

借助消息队列,在处理业务逻辑的地方发送消息,业务逻辑处理成功后,提交消息,确保消息是发送成功的,之后消息队列投递来进行处理,如果成功,则结束,如果没有成功,则重试,直到成功,不过仅仅适用业务逻辑中,第一阶段成功,第二阶段必须成功的场景。对应上图中的C流程。

4、基于消息队列+定时补偿机制的最终一致性

前面部分和上面基于事务型消息的队列,不同的是,第二阶段重试的地方,不再是消息中间件自身的重试逻辑了,而是单独的补偿任务机制。其实在大多数的逻辑中,第二阶段失败的概率比较小,所以单独独立补偿任务表出来,可以更加清晰,能够比较明确的直到当前多少任务是失败的。对应上图的E流程。

5、异步回调机制的引入

A应用调用B,在同步调用的返回结果中,B返回成功给到A,一般情况下,这时候就结束了,其实在99.99%的情况是没问题的,但是有时候为了确保100%,记住最起码在系统设计中100%,这时候B系统再回调A一下,告诉A,你调用我的逻辑,确实成功了。其实这个逻辑,非常类似TCP协议中的三次握手。上图中的B流程。

6、类似double check机制的确认机制

还是上图中异步回调的过程,A在同步调用B,B返回成功了。这次调用结束了,但是A为了确保,在过一段时间,这个时间可以是几秒,也可以是每天定时处理,再调用B一次,查询一下之前的那次调用是否成功。例如A调用B更新订单状态,这时候成功了,延迟几秒后,A查询B,确认一下状态是否是自己刚刚期望的。上图中的D流程。

三、分布式事务的缺点

1、二阶段提交协议缺点

两阶段提交涉及到多个节点的网络通信,通信时间如果过长,事务的相对时间也就会过长,那么锁定资源的时间也就长了.在高并发的服务中,就会存在严重的性能瓶劲

2、消息队列

在高并发的环境中,我们一般会采用消息队列来避免分布式事务的执行。

在使用消息队列时,我们需要做到可靠凭证的保存(分布式事务的消息),有如下几种方式:

以支付宝和余额宝为例进行说明.

支付宝完成扣钱的动作时,记录消息数据,将消息数据和业务数据存在同一个数据库实例中.

Begin Transaction
  update A set amount=amount-1000 where uid=100;
  insert into message(uid,amount,status) values (1,1000,1)
End Transaction
Commit;

将支付宝完成扣钱的消息及时发送给余额宝,余额宝完成处理后返回成功消息,支付宝收到消息后,消除消息表中对应的消息记录,即完成本次扣钱操作.

传统方式是,我做完了,发你消息。解决一致性的方案的意思就是,我先发你消息,我做完了再跟你确认我做完了。这是改进后的有事务的消息中间件。

参见:http://coolshell.cn/articles/10910.html

时间: 2024-10-10 10:30:43

分布式事务解决方案(转载)的相关文章

分布式事务解决方案(转载+整理)

导读:以下资料均来自网络,本人负责整理 1.使用消息队列来避免分布式事务 比如在北京很有名的姚记炒肝点了炒肝并付了钱后,他们并不会直接把你点的炒肝给你,而是给你一张小票,然后让你拿着小票到出货区排队去取.为什么他们要将付钱和取货两个动作分开呢?原因很多,其中一个很重要的原因是为了使他们接待能力增强(并发量更高). 还是回到我们的问题,只要这张小票在,你最终是能拿到炒肝的.同理转账服务也是如此,当支付宝账户扣除1万后,我们只要生成一个凭证(消息)即可,这个凭证(消息)上写着“让余额宝账户增加 1万

分布式事务 解决方案

事务的概念来源于业务过程.在许多情况下我们都希望能够确保在一个过程中执行的所有操作是完全成功的.在集中式系统中,事务被广泛用于服务器端和数据库系统,控制数据的操作.随着分布式计算的发展,事务在分布式计算领域中也得到了广泛的应用,但是分布式系统架构中,分布式事务问题是一个绕不过去的挑战.而微服务架构的流行,让分布式事问题日益突出! 下面我们以电商购物支付流程中,在各大参与者系统中可能会遇到分布式事务问题的场景进行详细的分析! 如上图所示,假设三大参与平台(电商平台.支付平台.银行)的系统都做了分布

基于金融系统的分布式事务解决方案

分布式系统架构中,分布式事务问题是一个绕不过去的挑战.而微服务架构的流行,让分布式事问题日益突出! 下面我们以电商购物支付流程中,在各大参与者系统中可能会遇到分布式事务问题的场景进行详细的分析! 如上图所示,假设三大参与平台(电商平台.支付平台.银行)的系统都做了分布式系统架构拆分,按上数中的流程步骤进行分析: 1.电商平台中创建订单:预留库存.预扣减积分.锁定优惠券,此时电商平台内各服务间会有分布式事务问题,因为此时已经要跨多个内部服务修改数据: 2.支付平台中创建支付订单(选银行卡支付):查

微服务架构的分布式事务解决方案

微服务架构的分布式事务解决方案 标签:分布式事务,微服务,消息最终一致性,分布式事务解决方案发布于 2016-07-16 18:39:05 分布式系统架构中,分布式事务问题是一个绕不过去的挑战.而微服务架构的流行,让分布式事问题日益突出! 下面我们以电商购物支付流程中,在各大参与者系统中可能会遇到分布式事务问题的场景进行详细的分析! 如上图所示,假设三大参与平台(电商平台.支付平台.银行)的系统都做了分布式系统架构拆分,按上数中的流程步骤进行分析: 1.电商平台中创建订单:预留库存.预扣减积分.

java微服务架构的分布式事务解决方案

java微服务架构的分布式事务解决方案 课程目录如下: 1.课程介绍20分钟2.解决方案的效果演示(结合支付系统真实应用场景)45分钟3.常用的分布式事务解决方案介绍47分钟4.消息发送一致性(可靠消息的前提保障)20分钟5.消息发送一致性的异常流程处理16分钟6.常规MQ队列消息的处理流程和特点12分钟7.消息重复发送问题及业务接口的幂等性设计18分钟8.可靠消息最终一致性方案1(本地消息服务)的设计19分钟9.可靠消息最终一致性方案2(独立消息服务)的设计24分钟10.可靠消息服务的设计与实

分布式事务解决方案---阅读--篇1--关于分布式系统的数据一致性问题

self: 这篇文章逻辑不算很清晰,但讲到的点还算是比较好的.自己总结一下可以做不错的参考: 1. 这边文章主要讲了两个方面,一方面是MQ的消息可靠性问题,另一方面是MQ可以被利用来做补偿机制的最终一致性分布式事务解决方案. 2. 关于MQ消息的问题大致有下面三个 2.1 如何保证A->M的消息,M一定接收到了,同样,如何保证M->A的消息,M一定接收到了 2.2 如果数据需要一致性更新,比如A发送了三条消息给M,M要么全部保存,要么全部不保存,不能够只保存其中的几条记录.我们假设更新的数据是

微服务架构下分布式事务解决方案——阿里云GTS

https://blog.csdn.net/jiangyu_gts/article/details/79470240 1 微服务的发展 微服务倡导将复杂的单体应用拆分为若干个功能简单.松耦合的服务,这样可以降低开发难度.增强扩展性.便于敏捷开发.当前被越来越多的开发者推崇,很多互联网行业巨头.开源社区等都开始了微服务的讨论和实践.Hailo有160个不同服务构成,NetFlix有大约600个服务.国内方面,阿里巴巴.腾讯.360.京东.58同城等很多互联网公司都进行了微服务化实践.当前微服务的开

分布式事务解决方案

分布式理论 当我们的单个数据库的性能产生瓶颈的时候,我们可能会对数据库进行分区,这里所说的分区指的是物理分区,分区之后可能不同的库就处于不同的服务器上了,这个时候单个数据库的ACID已经不能适应这种情况了,而在这种ACID的集群环境下,再想保证集群的ACID几乎是很难达到,或者即使能达到那么效率和性能会大幅下降,最为关键的是再很难扩展新的分区了,这个时候如果再追求集群的ACID会导致我们的系统变得很差,这时我们就需要引入一个新的理论原则来适应这种集群的情况,就是 CAP 原则或者叫CAP定理,那

分布式事务解决方案——柔性事务与服务模式

在分布式系统中,是无法使用本地事务保证数据的一致性的.一种标准的分布式事务就是全局事务(DTP模型).他是基于2PC来控制的.但是由于2PC自身就存在同步阻塞的问题,这也就导致全局事务效率很低.所以,这种全局事务并不适合解决大型网站的分布式事务问题. 柔性事务在业内,主要用来解决分布式事务的方案是使用柔性事务.所谓柔性事务,相比较与数据库事务中的ACID这种刚性事务来说,柔性事务保证的事"基本可用,最终一致."这其实就是基于BASE理论,保证数据的最终一致性. 虽然柔性事务并不像刚性事

阿里微服务架构下分布式事务解决方案-GTS

虽然微服务现在如火如荼,但对其实践其实仍处于初级阶段.即使互联网巨头的实践也大多是试验层面,鲜有核心业务系统微服务化的案例.GTS是目前业界第一款,也是唯一的一款通用的解决微服务分布式事务问题的中间件,而且可以保证数据的强一致性.本文将对GTS做出深入解读. 微服务倡导将复杂的单体应用拆分为若干个功能简单的.松耦合的服务,这样可以降低开发难度.增强扩展性.便于敏捷开发.概念2012年提出迅速火遍全球,被越来越多的开发者推崇,很多互联网行业巨头.开源社区等都开始了微服务的讨论和实践.根据Netfl