1010: [HNOI2008]玩具装箱toy [dp][斜率优化]

Description

  P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京。他使用自己的压缩器进行压
缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中。P教授有编号为1...N的N件玩具,第i件玩具经过
压缩后变成一维长度为Ci.为了方便整理,P教授要求在一个一维容器中的玩具编号是连续的。同时如果一个一维容
器中有多个玩具,那么两件玩具之间要加入一个单位长度的填充物,形式地说如果将第i件玩具到第j个玩具放到一
个容器中,那么容器的长度将为 x=j-i+Sigma(Ck) i<=K<=j 制作容器的费用与容器的长度有关,根据教授研究,
如果容器长度为x,其制作费用为(X-L)^2.其中L是一个常量。P教授不关心容器的数目,他可以制作出任意长度的容
器,甚至超过L。但他希望费用最小.

Input

  第一行输入两个整数N,L.接下来N行输入Ci.1<=N<=50000,1<=L,Ci<=10^7

Output

  输出最小费用

Sample Input

5 4
3
4
2
1
4

Sample Output

1


今天在省夏听了斜率优化dp

推式子&&结合数据结构搞了一晚上   QwQ

 1 //经过适当推式子可得当slope(j,k)>f[i] (j<k)时,k是优的
 2 #include<cstdio>
 3 #include<cstring>
 4 #include<iostream>
 5 using namespace std;
 6
 7 typedef long long ll;
 8
 9 const int maxn=50005;
10
11 int l=1,r=1,n,L;
12
13 //用类似(其实就是?)单调队列的数据结构维护最大值,使状态O(1)转移
14 long long s[maxn],f[maxn],dp[maxn],q[maxn];
15
16 double slope(int a,int b){
17     return (dp[a]-dp[b]+(f[a]+L)*(f[a]+L)-(f[b]+L)*(f[b]+L))/(2.0*(f[a]-f[b]));
18 }
19
20 int main(){
21     scanf("%d%d",&n,&L);  L++;
22     //预处理数据,简化公式
23     for(int i=1;i<=n;i++)  scanf("%d",&s[i]),s[i]+=s[i-1],f[i]=s[i]+i;
24     for(int i=1;i<=n;i++){
25         //不优,pop队首
26         while(l<r&&slope(q[l],q[l+1])<=f[i])  l++;
27         dp[i]=dp[q[l]]+(f[i]-f[q[l]]-L)*(f[i]-f[q[l]]-L);
28         //不满足凸壳性质,pop队尾(维护下凸壳)
29         while(l<r&&slope(q[r-1],q[r])>slope(q[r],i))  r--;
30         q[++r]=i;
31     }
32     printf("%lld\n",dp[n]);
33     return 0;
34 }

盲目压行尽力压行一时爽(雾

 1 #include<cstdio>
 2 const int maxn=50005;
 3 int l=1,r=1,n,L;
 4 long long s[maxn],f[maxn],dp[maxn],q[maxn];
 5 double slope(int a,int b){  return (dp[a]-dp[b]+(f[a]+L)*(f[a]+L)-(f[b]+L)*(f[b]+L))/(2.0*(f[a]-f[b]));  }
 6 int main(){
 7     scanf("%d%d",&n,&L);  L++;
 8     for(int i=1;i<=n;i++)  scanf("%d",&s[i]),s[i]+=s[i-1],f[i]=s[i]+i;
 9     for(int i=1;i<=n;i++){
10         while(l<r&&slope(q[l],q[l+1])<=f[i])  l++;
11         dp[i]=dp[q[l]]+(f[i]-f[q[l]]-L)*(f[i]-f[q[l]]-L);
12         while(l<r&&slope(q[r-1],q[r])>slope(q[r],i))  r--;
13         q[++r]=i;
14     }
15     printf("%lld\n",dp[n]);
16     return 0;
17 }
时间: 2024-10-06 00:12:31

1010: [HNOI2008]玩具装箱toy [dp][斜率优化]的相关文章

BZOJ 1010: [HNOI2008]玩具装箱toy [DP 斜率优化]

1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 9812  Solved: 3978[Submit][Status][Discuss] Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N的N件玩具,第i件玩具经过压缩后变成一维长度为Ci.为了方便整理,P

1010: [HNOI2008]玩具装箱toy(斜率优化)

1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 12280  Solved: 5277[Submit][Status][Discuss] Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N的N件玩具,第i件玩具经过压缩后变成一维长度为Ci.为了方便整理,

[BZOJ 1010][HNOI2008]玩具装箱toy(斜率优化Dp)

Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压.缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N的N件玩具,第i件玩具经过 压缩后变成一维长度为Ci.为了方便整理,P教授要求在一个一维容器中的玩具编号是连续的.同时如果一个一维容 器中有多个玩具,那么两件玩具之间要加入一个单位长度的填充物,形式地说如果将第i件玩具到第j个玩具放到一 个容器中,那么容器的长度将为 x=j-i+Sigma(Ck

【BZOJ-1010】玩具装箱toy DP + 斜率优化

1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 8432  Solved: 3338[Submit][Status][Discuss] Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N的N件玩具,第i件玩具经过压缩后变成一维长度为Ci.为了方便整理,P

bzoj1010: [HNOI2008]玩具装箱toy(斜率优化DP)

codevs也有这题,伪·双倍经验233 首先朴素DP方程很容易看出:f[i]=min(f[j]+(i-j-1+sum[i]-sum[j]-L)^2); 于是设g[i]=i+sum[i] g[j]=j+sum[j] c=1+L 则f[i]=min(f[j]+(g[i]-g[j]-c)^2) 证明决策单调性,假设 j 比 k 优 f[j]+(g[i]-g[j]-c)^2<f[k]+(g[i]-g[k]-c)^2 证明f[j]+(g[x]-g[j]-c)^2<f[k]+(g[x]-g[k]-c)^

BZOJ1010:[HNOI2008] 玩具装箱toy(斜率优化)

题意 求将一个长为\(n\)的序列(每个数为\(c_i\))分为很多段,每段(\(i\)~\(j\))的花费是\((j-i+\sum_{k=i}^{j}c_k-L)^2\),求最小的花费.(\(n<=50000\)) 题解 容易看出\(dp\)式子如下 \(dp[i]=min\{dp[j]+(sum[i]-sum[j]+i-(j+1)-L)^2\} \quad (j < i)\) 这个式子为\(O(n^2)\)的复杂度,显然过不去,我们进行一下斜率优化就能优化一维枚举决策点的复杂度,变成\(O

BZOJ 1010: [HNOI2008]玩具装箱toy | 单调队列优化DP

原题: http://www.lydsy.com/JudgeOnline/problem.php?id=1010 题解: #include<cstdio> #include<algorithm> #include<cstring> #define N 50005 typedef long long ll; using namespace std; ll n,c[N],a[N],b[N],sum[N],f[N],L,q[N],l,r; ll sq(ll x){return

bzoj 1010 [HNOI2008]玩具装箱toy(DP的斜率优化)

1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 7874  Solved: 3047[Submit][Status][Discuss] Description P 教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维 容器中.P教授有编号为1...N的N件玩具,第i件玩具经过压缩后变成一维长度为Ci.为了方便整理

BZOJ 1010: [HNOI2008]玩具装箱toy 斜率优化DP

1010: [HNOI2008]玩具装箱toy Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N的N件玩具,第i件玩具经过压缩后变成一维长度为Ci.为了方便整理,P教授要求在一个一维容器中的玩具编号是连续的.同时如果一个一维容器中有多个玩具,那么两件玩具之间要加入一个单位长度的填充物,形式地说如果将第i件玩具到第j个玩具放到一个容器中,那么容器