Java核心(二)深入理解线程池ThreadPool

本文你将获得以下信息:

  • 线程池源码解读
  • 线程池执行流程分析
  • 带返回值的线程池实现
  • 延迟线程池实现

为了方便读者理解,本文会由浅入深,先从线程池的使用开始再延伸到源码解读和源码分析等高级内容,读者可根据自己的情况自主选择阅读顺序和需要了解的章节。

一、线程池优点

线程池能够更加充分的利用CPU、内存、网络、IO等系统资源,线程池的主要作用如下:

  • 利用线程池可以复用线程,控制最大并发数;
  • 实现任务缓存策略和拒绝机制;
  • 实现延迟执行

阿里巴巴Java开发手册强制规定:线程资源必须通过线程池提供,如下图:

二、线程池使用

本节会介绍7种线程池的创建与使用,线程池的状态介绍,ThreadPoolExecutor参数介绍等。

2.1 线程池创建

线程池可以使用Executors和ThreadPoolExecutor,其中使用Executors有六种创建线程池的方法,如下图:

// 使用Executors方式创建
ExecutorService singleThreadExecutor = Executors.newSingleThreadExecutor();
ExecutorService cachedThreadPool = Executors.newCachedThreadPool();
ExecutorService fixedThreadPool = Executors.newFixedThreadPool(2);
ScheduledExecutorService singleThreadScheduledExecutor = Executors.newSingleThreadScheduledExecutor();
ScheduledExecutorService scheduledThreadPool = Executors.newScheduledThreadPool(2);
ExecutorService workStealingPool = Executors.newWorkStealingPool();
// 原始创建方式
ThreadPoolExecutor tp = new ThreadPoolExecutor(10, 10, 10L, TimeUnit.SECONDS, new LinkedBlockingQueue<Runnable>());

2.1.1 线程池解读

  1. newSingleThreadExecutor(),它的特点在于工作线程数目被限制为 1,操作一个×××的工作队列,所以它保证了所有任务的都是被顺序执行,最多会有一个任务处于活动状态,并且不允许使用者改动线程池实例,因此可以避免其改变线程数目。
  2. newCachedThreadPool(),它是一种用来处理大量短时间工作任务的线程池,具有几个鲜明特点:它会试图缓存线程并重用,当无缓存线程可用时,就会创建新的工作线程;如果线程闲置的时间超过 60 秒,则被终止并移出缓存;长时间闲置时,这种线程池,不会消耗什么资源。其内部使用 SynchronousQueue 作为工作队列。
  3. newFixedThreadPool(int nThreads),重用指定数目(nThreads)的线程,其背后使用的是×××的工作队列,任何时候最多有 nThreads 个工作线程是活动的。这意味着,如果任务数量超过了活动队列数目,将在工作队列中等待空闲线程出现;如果有工作线程退出,将会有新的工作线程被创建,以补足指定的数目 nThreads。
  4. newSingleThreadScheduledExecutor() 创建单线程池,返回 ScheduledExecutorService,可以进行定时或周期性的工作调度。
  5. newScheduledThreadPool(int corePoolSize)和newSingleThreadScheduledExecutor()类似,创建的是个 ScheduledExecutorService,可以进行定时或周期性的工作调度,区别在于单一工作线程还是多个工作线程。
  6. newWorkStealingPool(int parallelism),这是一个经常被人忽略的线程池,Java 8 才加入这个创建方法,其内部会构建<a href="https://docs.oracle.com/javase/9/docs/api/java/util/concurrent/ForkJoinPool.html">ForkJoinPool</a>,利用<a href="https://en.wikipedia.org/wiki/Work_stealing">Work-Stealing</a>算法,并行地处理任务,不保证处理顺序
  7. ThreadPoolExecutor是最原始的线程池创建,上面1-3创建方式都是对ThreadPoolExecutor的封装。

总结: 其中newSingleThreadExecutor、newCachedThreadPool、newFixedThreadPool是对ThreadPoolExecutor的封装实现,newSingleThreadScheduledExecutor、newScheduledThreadPool则为ThreadPoolExecutor子类ScheduledThreadPoolExecutor的封装,用于执行延迟任务,newWorkStealingPool则为Java 8新加的方法。

2.1.2 单线程池的意义

从以上代码可以看出newSingleThreadExecutor和newSingleThreadScheduledExecutor创建的都是单线程池,那么单线程池的意义是什么呢?

虽然是单线程池,但提供了工作队列,生命周期管理,工作线程维护等功能。

2.2 ThreadPoolExecutor解读

ThreadPoolExecutor作为线程池的核心方法,我们来看一下ThreadPoolExecutor内部实现,以及封装类是怎么调用ThreadPoolExecutor的。

先从构造函数说起,构造函数源码如下:

public ThreadPoolExecutor(int corePoolSize,
                          int maximumPoolSize,
                          long keepAliveTime,
                          TimeUnit unit,
                          BlockingQueue<Runnable> workQueue,
                          ThreadFactory threadFactory,
                          RejectedExecutionHandler handler) {
    if (corePoolSize < 0 ||
        maximumPoolSize <= 0 ||
        maximumPoolSize < corePoolSize ||
        keepAliveTime < 0)
        throw new IllegalArgumentException();
    if (workQueue == null || threadFactory == null || handler == null)
        throw new NullPointerException();
    this.acc = System.getSecurityManager() == null ?
            null :
            AccessController.getContext();
    this.corePoolSize = corePoolSize;
    this.maximumPoolSize = maximumPoolSize;
    this.workQueue = workQueue;
    this.keepAliveTime = unit.toNanos(keepAliveTime);
    this.threadFactory = threadFactory;
    this.handler = handler;
}

参数说明:

  • corePoolSize:所谓的核心线程数,可以大致理解为长期驻留的线程数目(除非设置了 allowCoreThreadTimeOut)。对于不同的线程池,这个值可能会有很大区别,比如 newFixedThreadPool 会将其设置为 nThreads,而对于 newCachedThreadPool 则是为 0。
  • maximumPoolSize:顾名思义,就是线程不够时能够创建的最大线程数。同样进行对比,对于 newFixedThreadPool,当然就是 nThreads,因为其要求是固定大小,而 newCachedThreadPool 则是 Integer.MAX_VALUE。
  • keepAliveTime:空闲线程的保活时间,如果线程的空闲时间超过这个值,那么将会被关闭。注意此值生效条件必须满足:空闲时间超过这个值,并且线程池中的线程数少于等于核心线程数corePoolSize。当然核心线程默认是不会关闭的,除非设置了allowCoreThreadTimeOut(true)那么核心线程也可以被回收。
  • TimeUnit:时间单位。
  • BlockingQueue:任务丢列,用于存储线程池的待执行任务的。
  • threadFactory:用于生成线程,一般我们可以用默认的就可以了。
  • handler:当线程池已经满了,但是又有新的任务提交的时候,该采取什么策略由这个来指定。有几种方式可供选择,像抛出异常、直接拒绝然后返回等,也可以自己实现相应的接口实现自己的逻辑。


来看一下线程池封装类对于ThreadPoolExecutor的调用:

newSingleThreadExecutor对ThreadPoolExecutor的封装源码如下:

public static ExecutorService newSingleThreadExecutor() {
    return new Executors.FinalizableDelegatedExecutorService
            (new ThreadPoolExecutor(1, 1,
                    0L, TimeUnit.MILLISECONDS,
                    new LinkedBlockingQueue<Runnable>()));
}

newCachedThreadPool对ThreadPoolExecutor的封装源码如下:

public static ExecutorService newCachedThreadPool() {
    return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
                                  60L, TimeUnit.SECONDS,
                                  new SynchronousQueue<Runnable>());
}

newFixedThreadPool对ThreadPoolExecutor的封装源码如下:

public static ExecutorService newFixedThreadPool(int nThreads) {
    return new ThreadPoolExecutor(nThreads, nThreads,
                                  0L, TimeUnit.MILLISECONDS,
                                  new LinkedBlockingQueue<Runnable>());
}

ScheduledExecutorService对ThreadPoolExecutor的封装源码如下:

public static ScheduledExecutorService newSingleThreadScheduledExecutor() {
    return new DelegatedScheduledExecutorService
        (new ScheduledThreadPoolExecutor(1));
}

newSingleThreadScheduledExecutor使用的是ThreadPoolExecutor的子类ScheduledThreadPoolExecutor,如下图所示:

newScheduledThreadPool对ThreadPoolExecutor的封装源码如下:

public static ScheduledExecutorService newScheduledThreadPool(int corePoolSize) {
    return new ScheduledThreadPoolExecutor(corePoolSize);
}

newScheduledThreadPool使用的也是ThreadPoolExecutor的子类ScheduledThreadPoolExecutor。

2.3 线程池状态

查看ThreadPoolExecutor源码可知线程的状态如下:

线程状态解读(以下内容来源于:https://javadoop.com/post/java-thread-pool):

  • RUNNING:这个没什么好说的,这是最正常的状态:接受新的任务,处理等待队列中的任务;
  • SHUTDOWN:不接受新的任务提交,但是会继续处理等待队列中的任务;
  • STOP:不接受新的任务提交,不再处理等待队列中的任务,中断正在执行任务的线程;
  • TIDYING:所有的任务都销毁了,workCount 为 0。线程池的状态在转换为 TIDYING 状态时,会执行钩子方法 terminated();
  • TERMINATED:terminated() 方法结束后,线程池的状态就会变成这个;

RUNNING 定义为 -1,SHUTDOWN 定义为 0,其他的都比 0 大,所以等于 0 的时候不能提交任务,大于 0 的话,连正在执行的任务也需要中断。

看了这几种状态的介绍,读者大体也可以猜到十之八九的状态转换了,各个状态的转换过程有以下几种:

  • RUNNING -> SHUTDOWN:当调用了 shutdown() 后,会发生这个状态转换,这也是最重要的;
  • (RUNNING or SHUTDOWN) -> STOP:当调用 shutdownNow() 后,会发生这个状态转换,这下要清楚 shutDown() 和 shutDownNow() 的区别了;
  • SHUTDOWN -> TIDYING:当任务队列和线程池都清空后,会由 SHUTDOWN 转换为 TIDYING;
  • STOP -> TIDYING:当任务队列清空后,发生这个转换;
  • TIDYING -> TERMINATED:这个前面说了,当 terminated() 方法结束后;

2.4 线程池执行

说了那么多下来一起来看线程池的是怎么执行任务的,线程池任务提交有两个方法:

  • execute
  • submit

其中execute只能接受Runnable类型的任务,使用如下:

ExecutorService singleThreadExecutor = Executors.newSingleThreadExecutor();
singleThreadExecutor.execute(new Runnable() {
    @Override
    public void run() {
        System.out.println(Thread.currentThread().getName());
    }
});

submit可以接受Runnable或Callable类型的任务,使用如下:

ExecutorService executorService = Executors.newSingleThreadExecutor();
executorService.submit(new Runnable() {
    @Override
    public void run() {
        System.out.println(Thread.currentThread().getName());
    }
});

2.4.1 带返回值的线程池实现

使用submit传递Callable类可以获取执行任务的返回值,Callable是JDK 1.5 添加的特性用于补充Runnable无返回的情况。

ExecutorService executorService = Executors.newSingleThreadExecutor();
Future<Long> result = executorService.submit(new Callable<Long>() {
    @Override
    public Long call() throws Exception {
        return new Date().getTime();
    }
});
try {
    System.out.println("运行结果:" + result.get());
} catch (InterruptedException e) {
    e.printStackTrace();
} catch (ExecutionException e) {
    e.printStackTrace();
}

2.4.2 延迟线程池实现

在线程池中newSingleThreadScheduledExecutor和newScheduledThreadPool返回的是ScheduledExecutorService,用于执行延迟线程池的,代码如下:

// 延迟线程池
ScheduledExecutorService scheduledThreadPool = Executors.newScheduledThreadPool(2);
scheduledThreadPool.schedule(new Runnable() {
    @Override
    public void run() {
        System.out.println("time:" + new Date().getTime());
    }
}, 10, TimeUnit.SECONDS);

完整示例下载地址: https://github.com/vipstone/java-core-example

三、线程池源码解读

阅读线程池的源码有一个小技巧,可以按照线程池执行的顺序进行串连关联阅读,这样更容易理解线程池的实现。

源码阅读流程解读

我们先从线程池的任务提交方法execute()开始阅读,从execute()我们会发现线程池执行的核心方法是addWorker(),在addWorker()中我们发现启动线程调用了start()方法,调用start()方法之后会执行Worker类的run()方法,run里面调用runWorker(),运行程序的关键在于getTask()方法,getTask()方法之后就是此线程的关闭,整个线程池的工作流程也就完成了,下来一起来看吧(如果本段文章没看懂的话也可以看完源码之后,回过头来再看一遍)。

3.1 execute() 源码解读

public void execute(Runnable command) {
    if (command == null)
        throw new NullPointerException();
    int c = ctl.get();

    // 如果当前线程数少于核心线程数,那么直接添加一个 worker 来执行任务,
    // 创建一个新的线程,并把当前任务 command 作为这个线程的第一个任务(firstTask)
    if (workerCountOf(c) < corePoolSize) {
        // 添加任务成功,那么就结束了。提交任务嘛,线程池已经接受了这个任务,这个方法也就可以返回了
        // 至于执行的结果,到时候会包装到 FutureTask 中。
        // 返回 false 代表线程池不允许提交任务
        if (addWorker(command, true))
            return;
        c = ctl.get();
    }
    // 到这里说明,要么当前线程数大于等于核心线程数,要么刚刚 addWorker 失败了

    // 如果线程池处于 RUNNING 状态,把这个任务添加到任务队列 workQueue 中
    if (isRunning(c) && workQueue.offer(command)) {
        /* 这里面说的是,如果任务进入了 workQueue,我们是否需要开启新的线程
         * 因为线程数在 [0, corePoolSize) 是无条件开启新的线程
         * 如果线程数已经大于等于 corePoolSize,那么将任务添加到队列中,然后进到这里
         */
        int recheck = ctl.get();
        // 如果线程池已不处于 RUNNING 状态,那么移除已经入队的这个任务,并且执行拒绝策略
        if (! isRunning(recheck) && remove(command))
            reject(command);
        // 如果线程池还是 RUNNING 的,并且线程数为 0,那么开启新的线程
        // 到这里,我们知道了,这块代码的真正意图是:担心任务提交到队列中了,但是线程都关闭了
        else if (workerCountOf(recheck) == 0)
            addWorker(null, false);
    }
    // 如果 workQueue 队列满了,那么进入到这个分支
    // 以 maximumPoolSize 为界创建新的 worker,
    // 如果失败,说明当前线程数已经达到 maximumPoolSize,执行拒绝策略
    else if (!addWorker(command, false))
        reject(command);
}

3.2 addWorker() 源码解读

// 第一个参数是准备提交给这个线程执行的任务,之前说了,可以为 null
// 第二个参数为 true 代表使用核心线程数 corePoolSize 作为创建线程的界线,也就说创建这个线程的时候,
//         如果线程池中的线程总数已经达到 corePoolSize,那么不能响应这次创建线程的请求
//         如果是 false,代表使用最大线程数 maximumPoolSize 作为界线
private boolean addWorker(Runnable firstTask, boolean core) {
    retry:
    for (;;) {
        int c = ctl.get();
        int rs = runStateOf(c);

        // 这个非常不好理解
        // 如果线程池已关闭,并满足以下条件之一,那么不创建新的 worker:
        // 1. 线程池状态大于 SHUTDOWN,其实也就是 STOP, TIDYING, 或 TERMINATED
        // 2. firstTask != null
        // 3. workQueue.isEmpty()
        // 简单分析下:
        // 还是状态控制的问题,当线程池处于 SHUTDOWN 的时候,不允许提交任务,但是已有的任务继续执行
        // 当状态大于 SHUTDOWN 时,不允许提交任务,且中断正在执行的任务
        // 多说一句:如果线程池处于 SHUTDOWN,但是 firstTask 为 null,且 workQueue 非空,那么是允许创建 worker 的
        if (rs >= SHUTDOWN &&
            ! (rs == SHUTDOWN &&
               firstTask == null &&
               ! workQueue.isEmpty()))
            return false;

        for (;;) {
            int wc = workerCountOf(c);
            if (wc >= CAPACITY ||
                wc >= (core ? corePoolSize : maximumPoolSize))
                return false;
            // 如果成功,那么就是所有创建线程前的条件校验都满足了,准备创建线程执行任务了
            // 这里失败的话,说明有其他线程也在尝试往线程池中创建线程
            if (compareAndIncrementWorkerCount(c))
                break retry;
            // 由于有并发,重新再读取一下 ctl
            c = ctl.get();
            // 正常如果是 CAS 失败的话,进到下一个里层的for循环就可以了
            // 可是如果是因为其他线程的操作,导致线程池的状态发生了变更,如有其他线程关闭了这个线程池
            // 那么需要回到外层的for循环
            if (runStateOf(c) != rs)
                continue retry;
            // else CAS failed due to workerCount change; retry inner loop
        }
    }

    /*
     * 到这里,我们认为在当前这个时刻,可以开始创建线程来执行任务了,
     * 因为该校验的都校验了,至于以后会发生什么,那是以后的事,至少当前是满足条件的
     */

    // worker 是否已经启动
    boolean workerStarted = false;
    // 是否已将这个 worker 添加到 workers 这个 HashSet 中
    boolean workerAdded = false;
    Worker w = null;
    try {
        final ReentrantLock mainLock = this.mainLock;
        // 把 firstTask 传给 worker 的构造方法
        w = new Worker(firstTask);
        // 取 worker 中的线程对象,之前说了,Worker的构造方法会调用 ThreadFactory 来创建一个新的线程
        final Thread t = w.thread;
        if (t != null) {
            // 这个是整个类的全局锁,持有这个锁才能让下面的操作“顺理成章”,
            // 因为关闭一个线程池需要这个锁,至少我持有锁的期间,线程池不会被关闭
            mainLock.lock();
            try {

                int c = ctl.get();
                int rs = runStateOf(c);

                // 小于 SHUTTDOWN 那就是 RUNNING,这个自不必说,是最正常的情况
                // 如果等于 SHUTDOWN,前面说了,不接受新的任务,但是会继续执行等待队列中的任务
                if (rs < SHUTDOWN ||
                    (rs == SHUTDOWN && firstTask == null)) {
                    // worker 里面的 thread 可不能是已经启动的
                    if (t.isAlive())
                        throw new IllegalThreadStateException();
                    // 加到 workers 这个 HashSet 中
                    workers.add(w);
                    int s = workers.size();
                    // largestPoolSize 用于记录 workers 中的个数的最大值
                    // 因为 workers 是不断增加减少的,通过这个值可以知道线程池的大小曾经达到的最大值
                    if (s > largestPoolSize)
                        largestPoolSize = s;
                    workerAdded = true;
                }
            } finally {
                mainLock.unlock();
            }
            // 添加成功的话,启动这个线程
            if (workerAdded) {
                // 启动线程
                t.start();
                workerStarted = true;
            }
        }
    } finally {
        // 如果线程没有启动,需要做一些清理工作,如前面 workCount 加了 1,将其减掉
        if (! workerStarted)
            addWorkerFailed(w);
    }
    // 返回线程是否启动成功
    return workerStarted;
}

在这段代码可以看出,调用了t.start();

3.3 runWorker() 源码解读

根据上面代码可知,调用了Worker的t.start()之后,紧接着会调用Worker的run()方法,run()源码如下:

public void run() {
    runWorker(this);
}

runWorker()源码如下:

//  worker 线程启动后调用,while 循环(即自旋!)不断从等待队列获取任务并执行
//  worker 初始化时,可指定 firstTask,那么第一个任务也就可以不需要从队列中获取
final void runWorker(Worker w) {
    Thread wt = Thread.currentThread();
    // 该线程的第一个任务(若有)
    Runnable task = w.firstTask;
    w.firstTask = null;
    // 允许中断
    w.unlock();
    boolean completedAbruptly = true;
    try {
        // 循环调用 getTask 获取任务
        while (task != null || (task = getTask()) != null) {
            w.lock();
            // 若线程池状态大于等于 STOP,那么意味着该线程也要中断
              /**
               * 若线程池STOP,请确保线程 已被中断
               * 如果没有,请确保线程未被中断
               * 这需要在第二种情况下进行重新检查,以便在关中断时处理shutdownNow竞争
               */
            if ((runStateAtLeast(ctl.get(), STOP) ||
                 (Thread.interrupted() &&
                  runStateAtLeast(ctl.get(), STOP))) &&
                !wt.isInterrupted())
                wt.interrupt();
            try {
                // 这是一个钩子方法,留给需要的子类实现
                beforeExecute(wt, task);
                Throwable thrown = null;
                try {
                    // 到这里终于可以执行任务了
                    task.run();
                } catch (RuntimeException x) {
                    thrown = x; throw x;
                } catch (Error x) {
                    thrown = x; throw x;
                } catch (Throwable x) {
                    // 这里不允许抛出 Throwable,所以转换为 Error
                    thrown = x; throw new Error(x);
                } finally {
                    // 也是一个钩子方法,将 task 和异常作为参数,留给需要的子类实现
                    afterExecute(task, thrown);
                }
            } finally {
                // 置空 task,准备 getTask 下一个任务
                task = null;
                // 累加完成的任务数
                w.completedTasks++;
                // 释放掉 worker 的独占锁
                w.unlock();
            }
        }
        completedAbruptly = false;
    } finally {
        // 到这里,需要执行线程关闭
        // 1. 说明 getTask 返回 null,也就是说,这个 worker 的使命结束了,执行关闭
        // 2. 任务执行过程中发生了异常
        //    第一种情况,已经在代码处理了将 workCount 减 1,这个在 getTask 方法分析中说
        //    第二种情况,workCount 没有进行处理,所以需要在 processWorkerExit 中处理
        processWorkerExit(w, completedAbruptly);
    }
}

3.4 getTask() 源码解读

runWorker里面的有getTask(),来看下具体的实现:

// 此方法有三种可能
// 1. 阻塞直到获取到任务返回。默认 corePoolSize 之内的线程是不会被回收的,它们会一直等待任务
// 2. 超时退出。keepAliveTime 起作用的时候,也就是如果这么多时间内都没有任务,那么应该执行关闭
// 3. 如果发生了以下条件,须返回 null
//     池中有大于 maximumPoolSize 个 workers 存在(通过调用 setMaximumPoolSize 进行设置)
//     线程池处于 SHUTDOWN,而且 workQueue 是空的,前面说了,这种不再接受新的任务
//     线程池处于 STOP,不仅不接受新的线程,连 workQueue 中的线程也不再执行
private Runnable getTask() {
    boolean timedOut = false; // Did the last poll() time out?
   for (;;) {
            // 允许核心线程数内的线程回收,或当前线程数超过了核心线程数,那么有可能发生超时关闭
            // 这里 break,是为了不往下执行后一个 if (compareAndDecrementWorkerCount(c))
            // 两个 if 一起看:如果当前线程数 wc > maximumPoolSize,或者超时,都返回 null
            // 那这里的问题来了,wc > maximumPoolSize 的情况,为什么要返回 null?
            // 换句话说,返回 null 意味着关闭线程。
            // 那是因为有可能开发者调用了 setMaximumPoolSize 将线程池的 maximumPoolSize 调小了
            // 如果此 worker 发生了中断,采取的方案是重试
            // 解释下为什么会发生中断,这个读者要去看 setMaximumPoolSize 方法,
            // 如果开发者将 maximumPoolSize 调小了,导致其小于当前的 workers 数量,
            // 那么意味着超出的部分线程要被关闭。重新进入 for 循环,自然会有部分线程会返回 null
            int c = ctl.get();
            int rs = runStateOf(c);
            // Check if queue empty only if necessary.
            if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
                // CAS 操作,减少工作线程数
                decrementWorkerCount();
                return null;
            }
            int wc = workerCountOf(c);
            // Are workers subject to culling?
            boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;
            if ((wc > maximumPoolSize || (timed && timedOut))
                && (wc > 1 || workQueue.isEmpty())) {
                if (compareAndDecrementWorkerCount(c))
                    return null;
                continue;
            }
            try {
                Runnable r = timed ?
                    workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
                    workQueue.take();
                if (r != null)
                    return r;
                timedOut = true;
            } catch (InterruptedException retry) {
            // 如果此 worker 发生了中断,采取的方案是重试
            // 解释下为什么会发生中断,这个读者要去看 setMaximumPoolSize 方法,
            // 如果开发者将 maximumPoolSize 调小了,导致其小于当前的 workers 数量,
            // 那么意味着超出的部分线程要被关闭。重新进入 for 循环,自然会有部分线程会返回 null
                timedOut = false;
            }
        }
}

四、线程池执行流程

线程池的执行流程如下图:

五、总结

本文总结以问答的形式展示,引自《深度解读 java 线程池设计思想及源码实现》,最下方附参考地址。

1、线程池有哪些关键属性?

  • corePoolSize 到 maximumPoolSize 之间的线程会被回收,当然 corePoolSize 的线程也可以通过设置而得到回收(allowCoreThreadTimeOut(true))。
  • workQueue 用于存放任务,添加任务的时候,如果当前线程数超过了 corePoolSize,那么往该队列中插入任务,线程池中的线程会负责到队列中拉取任务。
  • keepAliveTime 用于设置空闲时间,如果线程数超出了 corePoolSize,并且有些线程的空闲时间超过了这个值,会执行关闭这些线程的操作
  • rejectedExecutionHandler 用于处理当线程池不能执行此任务时的情况,默认有抛出 RejectedExecutionException 异常、忽略任务、使用提交任务的线程来执行此任务和将队列中等待最久的任务删除,然后提交此任务这四种策略,默认为抛出异常。

2、线程池中的线程创建时机?

  • 如果当前线程数少于 corePoolSize,那么提交任务的时候创建一个新的线程,并由这个线程执行这个任务;
  • 如果当前线程数已经达到 corePoolSize,那么将提交的任务添加到队列中,等待线程池中的线程去队列中取任务;
  • 如果队列已满,那么创建新的线程来执行任务,需要保证池中的线程数不会超过 maximumPoolSize,如果此时线程数超过了 maximumPoolSize,那么执行拒绝策略。

3、任务执行过程中发生异常怎么处理?

如果某个任务执行出现异常,那么执行任务的线程会被关闭,而不是继续接收其他任务。然后会启动一个新的线程来代替它。

4、什么时候会执行拒绝策略?

  • workers 的数量达到了 corePoolSize,任务入队成功,以此同时线程池被关闭了,而且关闭线程池并没有将这个任务出队,那么执行拒绝策略。这里说的是非常边界的问题,入队和关闭线程池并发执行,读者仔细看看 execute 方法是怎么进到第一个 reject(command) 里面的。
  • workers 的数量大于等于 corePoolSize,准备入队,可是队列满了,任务入队失败,那么准备开启新的线程,可是线程数已经达到 maximumPoolSize,那么执行拒绝策略。

六、参考资料

书籍:《码出高效:Java开发手册》

Java核心技术36讲:http://t.cn/EwUJvWA

深度解读 java 线程池设计思想及源码实现:https://javadoop.com/post/java-thread-pool

Java线程池-ThreadPoolExecutor源码解析(基于Java8):https://www.imooc.com/article/42990

课程推荐:

原文地址:http://blog.51cto.com/2188001/2318978

时间: 2024-10-11 22:55:06

Java核心(二)深入理解线程池ThreadPool的相关文章

java核心知识点 --- 线程池ThreadPool

线程池是多线程学习中需要重点掌握的. 系统启动一个新线程的成本是比较高的,因为它涉及与操作系统交互.在这种情形下,使用线程池可以很好的提高性能,尤其是当程序中需要创建大量生存期很短暂的线程时,更应该考虑使用线程池. 一.如何创建线程池?? 在Java5之前,线程池都是开发才手动实现的,从Java5开始,Java内建支持线程池.主要是新增了一个executors工厂类来生产线程池. 1.newCachedThreadPool():创建一个具有缓存功能的线程池,系统根据需要创建线程,这些线程将会被缓

Java并发编程(十二):线程池的使用(转载)

本文转载自:http://www.cnblogs.com/dolphin0520/p/3932921.html 在前面的文章中,我们使用线程的时候就去创建一个线程,这样实现起来非常简便,但是就会有一个问题: 如果并发的线程数量很多,并且每个线程都是执行一个时间很短的任务就结束了,这样频繁创建线程就会大大降低系统的效率,因为频繁创建线程和销毁线程需要时间. 那么有没有一种办法使得线程可以复用,就是执行完一个任务,并不被销毁,而是可以继续执行其他的任务? 在Java中可以通过线程池来达到这样的效果.

【转】Java学习---深入理解线程池

[原文]https://www.toutiao.com/i6566022142666736131/ 我们使用线程的时候就去创建一个线程,这样实现起来非常简便,但是就会有一个问题: 如果并发的线程数量很多,并且每个线程都是执行一个时间很短的任务就结束了,这样频繁创建线程就会大大降低系统的效率,因为频繁创建线程和销毁线程需要时间. 那么有没有一种办法使得线程可以复用,就是执行完一个任务,并不被销毁,而是可以继续执行其他的任务? 在Java中可以通过线程池来达到这样的效果.今天我们就来详细讲解一下Ja

多线程二:线程池(ThreadPool)

在上一篇中我们讲解了多线程的一些基本概念,并举了一些例子,在本章中我们将会讲解线程池:ThreadPool. 在开始讲解ThreadPool之前,我们先用下面的例子来回顾一下以前讲过的Thread. 1 private void Threads_Click(object sender, EventArgs e) 2 { 3 Console.WriteLine($"****************btnThreads_Click Start {Thread.CurrentThread.Manage

java多线程详解(7)-线程池的使用

在前面的文章中,我们使用线程的时候就去创建一个线程,这样实现起来非常简便,但是就会有一个问题: 如果并发的线程数量很多,并且每个线程都是执行一个时间很短的任务就结束了, 这样频繁创建线程就会大大降低系统的效率,因为频繁创建线程和销毁线程需要时间. 这个是时候我们需要使用线程池技术创建多线程. 本文目录大纲: 一.Java中的ThreadPoolExecutor类 二.深入剖析线程池实现原理 三.使用示例 四.如何合理配置线程池的大小 一.Java中的ThreadPoolExecutor类 jav

深入理解线程池(转)

原作者:海子 出处:http://www.cnblogs.com/dolphin0520/    在前面的文章中,我们使用线程的时候就去创建一个线程,这样实现起来非常简便,但是就会有一个问题: 如果并发的线程数量很多,并且每个线程都是执行一个时间很短的任务就结束了,这样频繁创建线程就会大大降低系统的效率,因为频繁创建线程和销毁线程需要时间. 那么有没有一种办法使得线程可以复用,就是执行完一个任务,并不被销毁,而是可以继续执行其他的任务? 在Java中可以通过线程池来达到这样的效果.今天我们就来详

java多线程总结五:线程池的原理及实现

1.线程池简介:     多线程技术主要解决处理器单元内多个线程执行的问题,它可以显著减少处理器单元的闲置时间,增加处理器单元的吞吐能力.        假设一个服务器完成一项任务所需时间为:T1 创建线程时间,T2 在线程中执行任务的时间,T3 销毁线程时间.    如果:T1 + T3 远大于 T2,则可以采用线程池,以提高服务器性能.                 一个线程池包括以下四个基本组成部分:                 1.线程池管理器(ThreadPool):用于创建并管

完全解析线程池ThreadPool原理&amp;使用

目录 1. 简介 2. 工作原理 2.1 核心参数 线程池中有6个核心参数,具体如下 上述6个参数的配置 决定了 线程池的功能,具体设置时机 = 创建 线程池类对象时 传入 ThreadPoolExecutor类 = 线程池的真正实现类 开发者可根据不同需求 配置核心参数,从而实现自定义线程池 // 创建线程池对象如下 // 通过 构造方法 配置核心参数 Executor executor = new ThreadPoolExecutor( CORE_POOL_SIZE, MAXIMUM_POO

高效线程池(threadpool)的实现

高效线程池(threadpool)的实现 Nodejs编程是全异步的,这就意味着我们不必每次都阻塞等待该次操作的结果,而事件完成(就绪)时会主动回调通知我们.在网络编程中,一般都是基于Reactor线程模型的变种,无论其怎么演化,其核心组件都包含了Reactor实例(提供事件注册.注销.通知功能).多路复用器(由操作系统提供,比如kqueue.select.epoll等).事件处理器(负责事件的处理)以及事件源(linux中这就是描述符)这四个组件.一般,会单独启动一个线程运行Reactor实例