我理解的数据结构(三)—— 队列(Queue)

我理解的数据结构(三)—— 队列(Queue)

一、队列

  • 队列是一种线性结构
  • 相比数组,队列对应的操作是数组的子集
  • 只能从一端(队尾)添加元素,只能从另一端(队首)取出元素
  • 队列是一种先进先出的数据结构(FIFO)

二、数组队列与循环队列

1. 数组队列

如果你有看过我之前的文章不要小看了数组或者,你就会发现,自己封装一个数组队列是如此的轻松加愉快!

(1)先定义一个接口,接口中定义队列需要实现的方法

public interface Queue<E> {
    int getSize();
    boolean isEmpty();
    // 查看队首元素
    E getFront();
    // 入队
    void enqueue(E ele);
    // 出队
    E dequeue();
}

(2)实现数组队列

public class ArrayQueue<E> implements Queue<E> {

    // 这里的数组是在之前的文章中封装好的,直接拿来用就好了
    private ArrayNew<E> array;

    public ArrayQueue(int capacity) {
        array = new ArrayNew<>(capacity);
    }

    public ArrayQueue() {
        this(10);
    }

    public int getCapacity() {
        return array.getCapacity();
    }

    @Override
    public int getSize() {
        return array.getSize();
    }

    @Override
    public boolean isEmpty() {
        return array.isEmpty();
    }

    @Override
    public E getFront() {
        return array.getFirst();
    }

    @Override
    public void enqueue(E ele) {
        array.addLast(ele);
    }

    @Override
    public E dequeue() {
        return array.removeFirst();
    }

    @Override
    public String toString() {

        StringBuffer res = new StringBuffer();

        res.append(String.format("arrayQueue: size = %d, capacity = %d\n", getSize(), getCapacity()));
        res.append("front [");

        for (int i = 0; i < array.getSize(); i++) {
            res.append(array.get(i));
            if (i != getSize() - 1) {
                res.append(", ");
            }
        }
        res.append("] tail");
        return res.toString();

    }

}

(3)数组队列的复杂度

方法 复杂度
enqueue O(1) 均摊
dequeue O(n)
front O(1)
getSize O(1)
isEmpty O(1)

这个时候我们会发现,在进行出队操作的时候,数组队列的复杂度是0(n),如果我们频繁的进行出队操作,那么其实数组队列的效率是很低的,如何提升数组队列的性能呢?这个时候我们就要用到循环队列了。

2. 循环队列队列

循环队列的原理:

  1. dequeue时,不要在去除队首元素时,把整体向前移动
  2. 维护 fronttailsize 这三个属性
  3. enqueue的时候tail++
  4. dequeue的时候front++

(1)实现循环队列

public class LoopQueue<E> implements Queue<E> {

    private E[] array;
    private int size;
    private int front;
    private int tail;

    public LoopQueue(int capacity) {
        // 我们需要浪费一个空间去判断队列是否已满,所以需要把capacity + 1
        array = (E[])new Object[capacity + 1];
        front = 0;
        tail = 0;
        size = 0;
    }

    public LoopQueue() {
        this(10);
    }

    // 返回用户传递的队列大小
    public int getCapacity() {
        return array.length - 1;
    }

    @Override
    public int getSize() {
        return size;
    }

    @Override
    public boolean isEmpty() {
        return front == tail;
    }

    @Override
    public E getFront() {
        if (isEmpty()) {
            throw new IllegalArgumentException("Queue is empty. Can't get front.");
        }

        return array[0];
    }

    @Override
    public void enqueue(E ele) {

        if (front == (tail + 1) % array.length) {
            // 扩展队列长度为原长度2倍
            resize(getCapacity() * 2);
        }

        array[tail] = ele;
        size++;
        tail = (tail + 1) % array.length;
    }

    @Override
    public E dequeue() {

        if (isEmpty()) { // 队列为空
            throw new IllegalArgumentException("Queue is empty. Can't get dequeue.");
        }

        E ele = array[front];

        size--;
        array[front] = null;
        front = (front + 1) % array.length;

        if (size == getCapacity() / 4 && getCapacity() / 2 != 0) {
            resize(getCapacity() / 2);
        }

        return ele;

    }

    private void resize(int newCapacity) {
        E[] newArray = (E[]) new Object[newCapacity + 1];

        for (int i = 0; i < size; i++) {
            newArray[i] = array[(front + i) % array.length];
        }

        array = newArray;
        front = 0;
        tail = size;
    }

    @Override
    public String toString() {
        StringBuffer res = new StringBuffer();

        res.append(String.format("queue: size = %d, capacity = %d\n", getSize(), getCapacity()));
        res.append("front [");

        // 循环条件,和循环增量都要注意下
        for (int i = front; i != tail; i = (i + 1) % array.length) {
            res.append(array[i]);

            if ((i + 1) % array.length != tail) {
                res.append(", ");
            }
        }
        res.append("] tail");

        return res.toString();
    }

}

(2)循环队列的复杂度

方法 复杂度
enqueue O(1) 均摊
dequeue O(1) 均摊
front O(1)
getSize O(1)
isEmpty O(1)

三、用时间说话

(1)用时方法

public static double test(Queue<Integer> q, int opCount) {

    // 纳秒
    long startTime = System.nanoTime();

    Random random = new Random();

    for (int i = 0; i < opCount; i++) {
        q.enqueue(random.nextInt(Integer.MAX_VALUE));
    }
    for (int i = 0; i < opCount; i++) {
        q.dequeue();
    }

    // 纳秒
    long endTime = System.nanoTime();

    return (endTime - startTime) / 1000000000.0;
}

(2)调用

// 十万次入队和十万次出队操作
int opCount = 100000;

ArrayQueue<Integer> aq = new ArrayQueue<>();
double time1 = test(aq, opCount);
System.out.println(time1);

LoopQueue<Integer> lq = new LoopQueue<>();
double time2 = test(lq, opCount);
System.out.println(time2);

(3)结果

  • 14.635995113
  • 0.054536447

这个就是算法和数据结构的力量!

原文地址:https://segmentfault.com/a/1190000016147024

原文地址:https://www.cnblogs.com/lalalagq/p/9973724.html

时间: 2024-10-28 08:45:12

我理解的数据结构(三)—— 队列(Queue)的相关文章

Python与数据结构[2] -> 队列/Queue[0] -> 数组队列的 Python 实现

队列 / Queue 数组队列 数组队列是队列基于数组的一种实现,其实现类似于数组栈,是一种FIFO的线性数据结构. Queue: <--| 1 | 2 | 3 | 4 | 5 |<-- 下面将使用Python中的list来替代C语言中的数组实现数组队列的数据结构. Note: 这里的实现并没有像C语言中的申请一块固定大小的数组,手动的定制数组中队列的头尾位置,而是利用list的特性直接完成,因此较为简单. 数组队列的实现与数组栈的实现基本类似,同时入列和出列也十分简单,仅需要对数组进行操作即

【Java数据结构学习笔记之二】Java数据结构与算法之队列(Queue)实现

  本篇是数据结构与算法的第三篇,本篇我们将来了解一下知识点: 队列的抽象数据类型 顺序队列的设计与实现 链式队列的设计与实现 队列应用的简单举例 优先队列的设置与实现双链表实现 队列的抽象数据类型   队列同样是一种特殊的线性表,其插入和删除的操作分别在表的两端进行,队列的特点就是先进先出(First In First Out).我们把向队列中插入元素的过程称为入队(Enqueue),删除元素的过程称为出队(Dequeue)并把允许入队的一端称为队尾,允许出的的一端称为队头,没有任何元素的队列

数据结构——链队列(linked queue)

/* linkedQueue.c */ /* 链队列 */ #include <stdio.h> #include <stdlib.h> #include <stdbool.h> /* 链队列数据结构 */ typedef struct node { int data; /* 节点存储数据 */ struct node *next; /* 指向下一个节点的指针 */ } Node; /* front指向队列头,rear指向队列尾 */ /* front->next

数据结构之队列and栈总结分析

一.前言: 数据结构中队列和栈也是常见的两个数据结构,队列和栈在实际使用场景上也是相辅相成的,下面简单总结一下,如有不对之处,多多指点交流,谢谢. 二.队列简介 队列顾名思义就是排队的意思,根据我们的实际生活不难理解,排队就是有先后顺序,先到先得,其实在程序数据结构中的队列其效果也是一样,及先进先出.    队列大概有如下一些特性: 1.操作灵活,在初始化时不需要指定其长度,其长度自动增加(默认长度为32) 注:在实际使用中,如果事先能够预估其长度,那么在初始化时指定长度,可以提高效率    

Java多线程总结之线程安全队列Queue

在Java多线程应用中,队列的使用率很高,多数生产消费模型的首选数据结构就是队列.Java提供的线程安全的Queue可以分为阻塞队列和非阻塞队列,其中阻塞队列的典型例子是BlockingQueue,非阻塞队列的典型例子是ConcurrentLinkedQueue,在实际应用中要根据实际需要选用阻塞队列或者非阻塞队列. 注:什么叫线程安全?这个首先要明确.线程安全的类 ,指的是类内共享的全局变量的访问必须保证是不受多线程形式影响的.如果由于多线程的访问(比如修改.遍历.查看)而使这些变量结构被破坏

【C++】容器适配器实现队列Queue的各种功能(入队、出队、判空、大小、访问所有元素等)

适配器: 将一个通用的容器转换为另外的容器,所谓的容器,指的是存放数据的器具,像我们知道的顺序表和链表都是容器Container.举个例子解释一下吧,我们的电压都是220v,而像充电线就起到转换到合适的电压的作用.而这里,我们的主角就是将通用的链表结构转换为来实现队列Queue这一数据结构,(意思就是,链表还可以去实现其他的数据结构). 在线性表中,分为链表和顺序表,我们知道其中的差别: 链表:节点灵活,使得插入删除元素方便灵活,但是对于单链表若有节点指针_head._tail,查找元素较为麻烦

Java多线程之线程安全队列Queue

在Java多线程应用中,队列的使用率很高,多数生产消费模型的首选数据结构就是队列.Java提供的线程安全的Queue可以分为阻塞队列和非阻塞队列,其中阻塞队列的典型例子是BlockingQueue,非阻塞队列的典型例子是ConcurrentLinkedQueue,在实际应用中要根据实际需要选用阻塞队列或者非阻塞队列. 注:什么叫线程安全?这个首先要明确.线程安全的类 ,指的是类内共享的全局变量的访问必须保证是不受多线程形式影响的.如果由于多线程的访问(比如修改.遍历.查看)而使这些变量结构被破坏

Python--线程队列(queue)、multiprocessing模块(进程对列Queue、管道(pipe)、进程池)、协程

队列(queue) 队列只在多线程里有意义,是一种线程安全的数据结构. get与put方法 ''' 创建一个"队列"对象 import queue q = queue.Queue(maxsize = 10) queue.Queue类即是一个队列的同步实现.队列长度可为无限或者有限.可通过Queue的构造函数的可选参数maxsize来设定队列长度.如果maxsize小于1就表示队列长度无限. 将一个值放入队列中: q.put() 调用队列对象的put()方法在队尾插入一个项目.put()

redis实现队列queue

参考:<Redis入门指南>第4章进阶 http://book.51cto.com/art/201305/395461.htm 4.4.2 使用Redis实现任务队列 说到队列很自然就能想到Redis的列表类型,3.4.2节介绍了使用LPUSH和RPOP命令实现队列的概念.如果要实现任务队列,只需要让生产者将任务使用LPUSH命令加入到某个键中,另一边让消费者不断地使用RPOP命令从该键中取出任务即可. 在小白的例子中,完成发邮件的任务需要知道收件地址.邮件主题和邮件正文.所以生产者需要将这三