Trie 树——搜索关键词提示

当你在搜索引擎中输入想要搜索的一部分内容时,搜索引擎就会自动弹出下拉框,里面是各种关键词提示,这个功能是怎么实现的呢?其实底层最基本的就是 Trie 树这种数据结构。

1. 什么是 “Trie” 树

Trie 树也叫 “字典树”。顾名思义,它是一个树形结构,专门用来处理在一组字符串集合中快速查找某个字符串的问题。

假设我们有 6 个字符串,它们分别是:how,hi,her,hello,so,see。我们希望在这里面多次查找某个字符串是否存在,如果每次都拿要查找的字符串和这六个字符串依次进行匹配,那效率就会比较低。

如果我们可以对这六个字符串做一下预处理,组织成 Trie 树的结构,那之后每次查找,都只要在 Trie 树中进行匹配即可。Trie 树的本质,就是利用字符串之间的公共前缀,将重复的前缀合并在一起

其中,根节点不包含任何信息,每个节点代表字符串中的一个字符,从根节点到红色节点的一条路径表示一个字符串。注意红色节点并不都是叶子节点,比如有两个词 how 和 however,那么 w 和 r 都是红色节点。一个 Trie 树的构造过程如下所示。

当我们要在构建好的 Trie 树中查找一个字符串的时候,那就要将查找的字符串分割成单个的字符,然后从根节点开始匹配。如下面的例子所示,绿色路径就是 “her” 的匹配路径,而 “he” 的最后一个匹配节点并不是红色节点,所以其并不能完全匹配任何字符串。

2. 如何实现一棵 Trie 树

从上面我们可以看到,Trie 树主要有两个操作:一个是将字符串集合构建成 Trie 树,另一个是在 Trie 树中查询一个字符串

Trie 树是一个多叉树结构,其子节点个数事先未知,但我们可以借助散列表的思想,在下标与字符之间建立一个一一映射,来存储子节点的指针。

假设我们的字符串只有 a 到 z 这 26 个字母,那么数组下标为 0 的元素就存储指向子节点 a 的指针,下标为 1 的元素就存储指向子节点 b 的指针,以此类推,下标为 25 的元素就存储指向子节点 z 的指针。如果某个字符的子节点不存在,那对应该下标位置的元素就为 NULL。当我们在 Trie 树中进行查找的时候,就可以拿字符的 ASCII 码减去 ‘a‘ 的 ASCII 码来获取其子节点的指针。

#include <iostream>
#include <cstring>

using namespace std;

class TrieNode
{
public:

    char data;
    bool is_ending_char;
    TrieNode *children[26];

    TrieNode(char ch)
    {
        data = ch;
        is_ending_char = false;
        for (int i = 0; i < 26; i++)
            children[i] = NULL;
    }
};

class Trie
{
private:

    TrieNode *root;

public:

    // 构造函数,根节点存储无意义字符 ‘/‘
    Trie()
    {
        root = new TrieNode(‘/‘);
    }

    // 向 Trie 树中添加一个字符串
    void insert_string(const char str[])
    {
        TrieNode *cur = root;
        for (unsigned int i = 0; i < strlen(str); i++)
        {
            int index = int(str[i] - ‘a‘);
            if (cur->children[index] == NULL)
            {
                TrieNode *temp = new TrieNode(str[i]);
                cur->children[index] = temp;
            }
            cur = cur->children[index];
        }
        cur->is_ending_char = true;
    }

    // 在 Trie 树中查找一个字符串
    bool search_string(const char str[])
    {
        TrieNode *cur = root;
        for (unsigned int i = 0; i < strlen(str); i++)
        {
            int index = int(str[i] - ‘a‘);
            if (cur->children[index] == NULL)
            {
                return false;
            }
            cur = cur->children[index];
        }
        if (cur->is_ending_char == true) return true;
        else return false;
    }
};

int main()
{
    char str[][8] = {"how", "hi", "her", "hello", "so", "see", "however"};

    Trie test;
    for (int i = 0; i < 7; i++)
    {
        test.insert_string(str[i]);
    }

    cout << "Finding \‘her\‘: " << test.search_string("her") << endl;
    cout << "Finding \‘he\‘: " << test.search_string("he") << endl;
    cout << "Finding \‘how\‘: " << test.search_string("how") << endl;
    cout << "Finding \‘however\‘: " << test.search_string("however") << endl;

    return 0;
}

在构建 Trie 树的过程中,需要扫描所有的字符串,时间复杂度为 O(n),其中 n 表示所有字符串的长度之和。而在 Trie 树中进行查找的话,如果待查找字符串的长度为 k 的话,那最多只需要对比 k 个节点即可,时间复杂度为 O(k)。

3. Trie 树的内存消耗

在上面的例子中,Trie 树的每个节点都要存储 26 个指针,尽管某些节点的子节点很少,我们依然要维护这么一个长度的数组。另外,如果字符串中不仅包含小写字母,而且包含大写字母、数字甚至是中文等,那就会需要更多的存储空间。也就是说,在某些情况下,Trie 树并不一定会节省内存空间,尤其是在重复前缀不多的时候。

当然,尽管 Trie 树可能会很浪费内存,但是确实非常高效,这也是一种空间换时间的折中。如果我们可以稍微牺牲一点查询的效率,那就可以选用数组、散列表、红黑树等其他数据结构来存储一个节点的子节点指针。

假设我们使用数组,数组中的指针按照所指向子节点的字符大小顺序排列。这样,在查找的时候,我们可以通过二分算法来快速找到指向子节点的指针。但是,在往 Trie 树中插入字符串的话,为了维护数组的有序性,就会稍微慢了点。

另外,还可以采用缩点优化,将只有一个子节点而且不是结束节点的节点与其子节点进行合并,来节省空间,但这也增加了编码难度。

4. Trie 树与散列表、红黑树的比较

在字符串匹配或者说查找问题上,Trie 树对要处理的字符串有极其严格的要求。

  • 字符串中包含的字符集不能太大;
  • 字符串的前缀重合比较多;
  • 从零开始实现一个 Trie 树,比较复杂,不便于维护;
  • Trie 树中利用指针来存储数据,不利用利用缓存。

因此,在工程中,我们更倾向于使用散列表或者红黑树,它们都不需要自己去实现,直接利用编程语言中提供的线程类库就行。实际上,Trie 树不适合这种精确查找,更适合的是查找前缀匹配的字符串,也就是搜索时的关键词提示功能。

5. 搜索关键词提示功能的实现

假设关键词库由用户的热门搜索关键词组成,我们将这个词库构建成一个 Trie 树。当用户输入其中某个单词的时候,把这个词作为一个前缀子串在 Trie 树中匹配。还以上面为例,当用户输入 ‘h‘ 时,我们就可以将以 ‘h‘ 为前缀的单词 hello,her,hi,how 展示在搜索提示框,当用户输入 ‘he‘ 时,我们就可以将以 ‘h‘ 为前缀的单词 hello,her 展示在搜索提示框。这就是搜索关键词提示的最基本的算法原理。

另外,Trie 树还可以扩展到更加广泛的应用上,比如输入法、代码编辑器和浏览器的自动输入补全功能。

参考资料-极客时间专栏《数据结构与算法之美》

获取更多精彩,请关注「seniusen」!

原文地址:https://www.cnblogs.com/seniusen/p/10121467.html

时间: 2024-10-07 12:07:17

Trie 树——搜索关键词提示的相关文章

【转】B树、B-树、B+树、B*树、红黑树、 二叉排序树、trie树Double Array 字典查找树简介

B  树 即二叉搜索树: 1.所有非叶子结点至多拥有两个儿子(Left和Right): 2.所有结点存储一个关键字: 3.非叶子结点的左指针指向小于其关键字的子树,右指针指向大于其关键字的子树: 如: B树的搜索,从根结点开始,如果查询的关键字与结点的关键字相等,那么就命中:否则,如果查询关键字比结点关键字小,就进入左儿子:如果比结点关键字大,就进入右儿子:如果左儿子或右儿子的指针为空,则报告找不到相应的关键字: 如果B树的所有非叶子结点的左右子树的结点数目均保持差不多(平衡),那么B树的搜索性

利用Trie树求多个字符串编辑距离的进一步优化

1.引言 题目的意思应该是:在一个给定的字典中,求与给定的字符串的编辑距离不大于2的所有的单词.原先写过两片关于此问题的文章,那两片篇章文章给出两种解决思路:其一是暴力求解法,这种方法最容易想到.就是将词典中的词一一与给定的字符串计算编辑距离,不大于2的输出,大于2的舍弃,这种方法思路简单但是很费时间.其二根据词典中这些词之间的编辑距离建立一个以单词为节点的Trie树,遍历的时候,通过计算根节点与给定字符串的编辑距离就可以排除掉一部分分支了,然后继续计算该字符串与剩余的分支的根的编辑距离,继续排

[搜索]Trie树的一种实现

trie树也叫字典树,搜索树等. 如图所示 下面是用stl 的map来实现 class trie_item_c { public: trie_item_c(){} trie_item_c(const char nm) { name = nm; } void set_name(const char nm) { name = nm; } trie_item_c * get_child(const char nm) { map<const char ,trie_item_c*>::const_ite

java实现的Trie树数据结构

最近在学习的时候,经常看到使用Trie树数据结构来解决问题,比如" 有一个1G大小的一个文件,里面每一行是一个词,词的大小不超过16字节,内存限制大小是1M.返回频数最高的100个词." 该如何解决? 有一种方案就是使用Trie树加 排序实现 . 什么是Trie 树呢?也就是常说的字典树,网上对此讲得也很多,简单补充一下个人理解: 它实际上相当于把单词的公共部分给拎出来,这样一层一层往上拎直到得到每个节点都是不可分的最小单元! 比如网上一个例子 一组单词,inn, int, at, a

跳跃表,字典树(单词查找树,Trie树),后缀树,KMP算法,AC 自动机相关算法原理详细汇总

第一部分:跳跃表 本文将总结一种数据结构:跳跃表.前半部分跳跃表性质和操作的介绍直接摘自<让算法的效率跳起来--浅谈"跳跃表"的相关操作及其应用>上海市华东师范大学第二附属中学 魏冉.之后将附上跳跃表的源代码,以及本人对其的了解.难免有错误之处,希望指正,共同进步.谢谢. 跳跃表(Skip List)是1987年才诞生的一种崭新的数据结构,它在进行查找.插入.删除等操作时的期望时间复杂度均为O(logn),有着近乎替代平衡树的本领.而且最重要的一点,就是它的编程复杂度较同类

剑指Offer——Trie树(字典树)

剑指Offer--Trie树(字典树) Trie树 Trie树,即字典树,又称单词查找树或键树,是一种树形结构,是一种哈希树的变种.典型应用是统计和排序大量的字符串(但不仅限于字符串),所以经常被搜索引擎系统用于文本词频统计.它的优点是:最大限度地减少无谓的字符串比较,查询效率比哈希表高. Trie的核心思想是空间换时间.利用字符串的公共前缀来降低查询时间的开销以达到提高效率的目的. Trie树也有它的缺点,Trie树的内存消耗非常大.当然,或许用左儿子右兄弟的方法建树的话,可能会好点.可见,优

Trie树标准模版

这是一个Trie树标准模版 By Leo 本人版权,请勿抄袭!! 先看教程:  1. 什么是trie树 1.Trie树 (特例结构树) Trie树,又称单词查找树.字典树,是一种树形结构,是一种哈希树的变种,是一种用于快速检索的多叉树结构.典型应用是用于统计和排序大量的字符串(但不仅限于字符串),所以经常被搜索引擎系统用于文本词频统计.它的优点是:最大限度地减少无谓的字符串比较,查询效率比哈希表高.      Trie的核心思想是空间换时间.利用字符串的公共前缀来降低查询时间的开销以达到提高效率

Trie树/字典树

Trie树结构 Trie树是一种树形数据结构,又称为单词查找树.字典树,是一种用于快速检索的多叉树结构.典型应用是统计和排序大量的字符串(但不仅限于字符串),所以经常被搜索引擎系统用于文本词频统计.     它的主要设计思想是空间换时间,利用字符串的公共前缀来降低查询时间的开销.它的优点是可以最大限度的减少无谓的字符串比较,查询效率比哈希表高:缺点是内存消耗非常大. Trie树基本特性 根节点不包含字符,除根节点外每一个节点都只包含一个字符 从根节点到某一节点,路径上经过的字符连接起来,为该节点

Trie树(字典树)(1)

Trie树.又称字典树,单词查找树或者前缀树,是一种用于高速检索的多叉树结构. Trie树与二叉搜索树不同,键不是直接保存在节点中,而是由节点在树中的位置决定. 一个节点的全部子孙都有同样的前缀(prefix),也就是这个节点相应的字符串,而根节点相应空字符串.普通情况下.不是全部的节点都有相应的值,仅仅有叶子节点和部分内部节点所相应的键才有相关的值. A trie, pronounced "try", is a tree that exploits some structure in