晶体三极管及其基本放大电路(一)

晶体三极管主要分三个部分学习,第一,掌握三极管的基础知识,包括其电流分配原理、主要参数、模型分析和伏安特性曲线;第二,掌握放大电路的主要性能指标及分析方法;第三,结合实际放大电路,计算分析放大电路的各种参数,结合实例分析共发射级电路和共集电极放大电路两种。集成放大器芯片,一般作为理想器件分析,但器件总不会是理想器件,学会分析基本的放大电路,可以对集成芯片的放大器做出各种补偿对策,以便于更好的把控器件的使用。

一.三极管基础知识

1.本征半导体

2.杂质半导体(P型和N型)

3.半导体导电的机理

半导体中有两种载流子,电子和空穴,其对应的运动也有两种,扩散运动和漂移运动,分别形成扩散电流和漂移电流。

扩散运动:外电场的作用;漂移运动:浓度差

二.放大电路概述

1.工艺过程

通过掺杂工艺将本征硅或者锗片的一边做成P型半导体,另一边做成N型半导体,这样它们的表面会形成很薄的特殊物理层,称为PN结。根据P区和N区掺杂浓度的不同可以分为对称结和非对称结,非对称结包括

2.形成过程及原理

P区空穴多,N区电子多,形成了载流子浓度差,空穴和电子做扩散运动形成扩散电流,扩散运动后的电子和空穴分别在其对立区内与空穴和电子复合,在交界面的P区和N区分别留下了不能够移动的等量受主离子和等量施主离子,通常把这个区域叫做空间电荷区,又叫做势垒区。

在交界面形成了势垒电压,形成的内建电场阻碍扩散运动,此时漂移运动被慢慢加强,形成漂移电流

=时,通过空间电荷区的净载流子为0,平衡状态下,空间电荷区的宽度一定,的值也保持不变。

为施主离子浓度,受主离子浓度。

一般情况,硅的势垒电压为0.5~0.7V,锗的势垒电压为0.2~0.3V,温度升高1℃,势垒电压降低0.25mV。

3.特性

(1)正向特性

外加电压加在阻挡层上面时,方向与势垒电压相反,则阻挡层的电压减小为,阻挡层减小,扩散运动增强,P区的空穴源源不断的通过阻挡层到达N区,N区的电子不断的扩散到P区,形成了由P到N的正向电流。

(2)反向特性

反加电压加在阻挡层上面时,方向与势垒电压相同,则阻挡层的电压减小为,阻挡层增大,只有P区的少数载流子通过阻挡层到达N区,N区的少数空穴到P区,形成了由N到P的反向电流,又叫做反向饱和电流。

硅:

锗:

(3)伏安特性

(4)击穿特性

雪崩击穿:

齐纳击穿:

(5)温度特性

(6)电容特性

三.共射级放大电路分析

1.晶体二极管的特性

(1)正相特性

(2)反向特性

(3)温度特性

(4)反向击穿性

2.二极管的主要参数

直流参数:

(1)最大整流电流IF:长期运行时允许通过的最大电流

(2)反向击穿电压VBR:二极管反向击穿时的电压

(3)最大反向工作电压VRM:工作时允许的最大电压,一般为击穿电压的一半。

(4)反向电流IR(反向饱和电流Is):二极管未击穿时候的反向电流,其值越小说明单向导电性越好。

(5)直流电阻RD:直流电压与电流之比,其值是一个变量,静态在工作点斜率的倒数。

交流参数:

  1. 交流电阻rd:Q点附近电压变化量与电流变化量之比。

(2)结电容Cj:势垒电容和扩散电容总效果。

(3)最高工作频率fM:超过此频率,单向导通性恶化。

2.几种特殊的二极管

(1)稳压二极管

(2)变容二极管

(3)肖特基二极管

(4)发光二极管

(5)光电耦合器

四.共集电极电路分析

原文地址:https://www.cnblogs.com/faithyiyo/p/10198697.html

时间: 2024-11-06 03:50:00

晶体三极管及其基本放大电路(一)的相关文章

晶体三极管及其基本放大电路

晶体三极管 晶体管的结构及其类型 晶体管的电流分配与放大作用 晶体管的共射特性曲线 晶体管的主要参数 放大电路的组成和工作原理 基本共射极放大电路的组成 放大电路的分析 直流通路和交流通路 静态分析 动态分析 基本放大电路是组成各种复杂放大电路的基本单元 晶体三极管 晶体三极管又称为双极型晶体管(BJT)-[因为空穴和电子都参与导电,是两种极性的载流子].半导体三极管等 晶体管的结构及其类型 ★发射极电流向里则为PNP,反之为NPN 三个区域分别称为发射区.基区和集电区,对应电极分别称为发射极.

三极管功率放大电路

一般视听电路中的功率放大(简称功放)电路是在电压放大器之后,把低频信号再进一步放大,以得到较大的输出功率,最终用来推动扬声器放音或在电视机中提供偏转电流. 一.功率放大电流的特点 对功放电路的了解或评价,主要从输出功率.效率和失真这三方面考虑. 1.为得到需要的输出功率,电路须选集电极功耗足够大的三极管,功放管的工作电流和集电极电压也较高.电路设计使用中首先要考虑怎样充分地发挥三极管功能而又不损坏三极管.由于电路中功放管工作状态常接近极限值,所以功放电流调整和使用时要小心,不宜超限使用. 2.从

模拟电子电路基础--三极管放大电路

一.直流分析 Q点:静态工作点,IB,IC,UCE. 1.1 公式法    IB=(UCC-UBE)/RB    IC=βIB    UCE=UCC-ICRC 1.2 图解法    (1)通过直流负载方程UCE=UCC-ICRC画出直流负载线    (2)由基极回路求出IB    (3)找出iB=IB时,输出特性曲线和直流负载线的交点,该点就是Q点 二.交流分析 (1)作直流负载线,找出Q点    (2)过Q点作一条斜率为R’L=RC||RL的直线    (3)求UCE坐标的截距,U’CC=UC

晶体三极管进行双路控制驱动电路设计

开关管驱动电路已经广泛应用于快速开关动作的三极管的各种电子电路中,可提高电路可靠性,改善电路性能.驱动控制电路.它实际是一个通过控制信号对输入信号进行功率放大的电路,满足负载额定功率使得负载正常工作,可以对一定的输入信号进行驱动控制,虽然不同负载需要不同的驱动电路,但实质基本一样. 我们结合模拟电路中的控制驱动原理,利用晶体三极管饱和导通和截止作为开关控制信号,从驱动保护.抗干扰等方面进行优化设计,设计了一种输入脉宽可调信号的两路驱动保护电路.该电路具有快速精确.高性能.小型化.实用性等特点,可

判断三极管是否可以放大交流信号的方法

以下内容,摘抄于网络,然后汇总整理,为了加深印象,所有的文字和原理图都是自己完成的. 判断三极管放大电路是否有放大交流信号的方法: 晶体三极管放大电路有三种基本组态:共射集电路.共集电极电路.共基极电路.不管涉及哪种应用组态的放大电路,必须保证其具有交流放大能力.以下从三点触发,可以判断一个晶体管是否有交流放大能力.     1.三极管必须有合适的工作点 工作点合适与否需要定量计算.只定性判断其有无交流放大能力,关键看三极管是否满足发射结正偏,集电极反偏.即具有交流放大能力的可能,对于NPN管子

一文教你秒懂晶体三极管与场效应晶体管选型的诀窍

在电子元件行业,晶体三极管与场效应晶体管都是备受推崇的两种电子元件,尤其在开关电源方面备受电子工程师的青睐,可是对于刚入门的采购,究竟该如何去选晶体三极管与场效应晶体管,晶体三极管简称三极管,和场效应晶体管一样,具有放大作用和开关特性的,是电子设备中的核心器件之- -,应用十分广泛.三极管和场效应晶体管虽然特性,外形相同,但是工作原理却大不-样,普通三极管是电流控制器件,二场效应晶体管是电压控制器件. 一.晶体三极管和场效应晶体管说明: (1)晶体三极管含义: 用于电压放大或者电路放大的控制器件

初级模拟电路:3-6 共射放大电路-2(分压偏置的直流分析)

回到目录 (续上小节) 3. 分压偏置 前面的“改进型固定偏置”电路,虽然情况比原始的固定偏置电路好了一点,但还是不太理想,于是人们又设计出了性能更加稳定的分压偏置(voltage-divider bias configuration)电路,如下图所示: 图3-6.06 分压偏置电路的稳定性非常完美,放大系数β的变化对输出静态工作点IC和VCE几乎没有什么影响,我们在下面的分析中可以验证这一点. 对于分压偏置的输入端分析,有“近似分析”和“精确分析”两种方法,一般在实际工程应用中,“近似分析”法

差分放大电路的CMRR与输入电阻分析

分析了经典差分放大电路的共模抑制比CMRR与输入电阻RIN 1.经典差分放大电路 基于运放的经典差分放大电路在各模电教材中均能找到,利用分离电阻和运算放大器实现,如图1所示为一种差分放大电路: 图1 经典差分电路 (1)理想状态下的分析 首先将OP1177看作理想运放,利用虚短.虚断的原理,可以得到: VP=V2*R4/(R3+R4)---------------------(1) (V1-VN)/R1=(VN-VOUT)/R2------------(2) VN=VP-------------

放大电路中的自激震荡及相位补偿方法

自激震荡 产生条件: 由于电容的电流滞后于电压,导致信号产生相位滞后,而容抗随频率增大,因而低频滞后小,高频滞后大.假设放大电路反馈回路为纯电阻, 在低频段,耦合电容.旁路电容分压作用增大,影响电流,造成环路增益(AF)相比于中频产生超前相移: 在高频段,半导体元件极间电容的旁路作用增大,使AF相比于中频产生滞后相移: 若反馈量相移nπ,则反馈回路由原来的负反馈变为正反馈,造成信号的自激放大. 消除方法: 滞后补偿 简单滞后补偿:在中间级的输出并联一个小电容,让高端截止频率变小,从而使180°反