UVA11178 Morley's Theorem

题意

PDF

分析

就按题意模拟即可,注意到对称性,只需要知道如何求其中一个。

注意A、B、C按逆时针排列,利用这个性质可以避免旋转时分类讨论。

时间复杂度\(O(T)\)

代码

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<set>
#include<map>
#include<queue>
#include<stack>
#include<algorithm>
#include<bitset>
#include<cassert>
#include<ctime>
#include<cstring>
#define rg register
#define il inline
#define co const
template<class T>il T read()
{
    rg T data=0;
    rg int w=1;
    rg char ch=getchar();
    while(!isdigit(ch))
    {
        if(ch=='-')
            w=-1;
        ch=getchar();
    }
    while(isdigit(ch))
    {
        data=data*10+ch-'0';
        ch=getchar();
    }
    return data*w;
}
template<class T>T read(T&x)
{
    return x=read<T>();
}
using namespace std;
typedef long long ll;

co double eps=1e-10;
int dcmp(double x)
{
    if(fabs(x)<eps)
        return 0;
    else
        return x<0?-1:1;
}

struct Point
{
    double x,y;
    Point(double x=0,double y=0)
    :x(x),y(y){}

    bool operator<(co Point&rhs)co
    {
        return x<rhs.x||(x==rhs.x&&y<rhs.y);
    }

    bool operator==(co Point&rhs)co
    {
        return dcmp(x-rhs.x)==0&&dcmp(y-rhs.y)==0;
    }
};
typedef Point Vector;

Vector operator+(Vector A,Vector B)
{
    return Vector(A.x+B.x,A.y+B.y);
}

Vector operator-(Point A,Point B)
{
    return Vector(A.x-B.x,A.y-B.y);
}

Vector operator*(Vector A,double p)
{
    return Vector(A.x*p,A.y*p);
}

Vector operator/(Vector A,double p)
{
    return Vector(A.x/p,A.y/p);
}

double Dot(Vector A,Vector B)
{
    return A.x*B.x+A.y*B.y;
}

double Length(Vector A)
{
    return sqrt(Dot(A,A));
}

double Angle(Vector A,Vector B)
{
    return acos(Dot(A,B)/Length(A)/Length(B));
}

double Cross(Vector A,Vector B)
{
    return A.x*B.y-A.y*B.x;
}

double Area2(Point A,Point B,Point C)
{
    return Cross(B-A,C-A);
}

Vector Rotate(Vector A,double rad)
{
    return Vector(A.x*cos(rad)-A.y*sin(rad),A.x*sin(rad)+A.y*cos(rad));
}

Vector Normal(Vector A)
{
    double L=Length(A);
    return Vector(-A.y/L,A.x/L);
}

Point GetLineIntersection(Point P,Vector v,Point Q,Vector w)
{
    Vector u=P-Q;
    double t=Cross(w,u)/Cross(v,w);
    return P+v*t;
}

double DistanceToLine(Point P,Point A,Point B)
{
    Vector v1=B-A,v2=P-A;
    return fabs(Cross(v1,v2))/Length(v1);
}

double DistanceToSegment(Point P,Point A,Point B)
{
    if(A==B)
        return Length(P-A);
    Vector v1=B-A,v2=P-A,v3=P-B;
    if(dcmp(Dot(v1,v2))<0)
        return Length(v2);
    if(dcmp(Dot(v1,v3))>0)
        return Length(v3);
    return DistanceToLine(P,A,B);
}

Point GetLineProjection(Point P,Point A,Point B)
{
    Vector v=B-A;
    return A+v*(Dot(v,P-A)/Dot(v,v));
}

bool SegmentProperIntersection(Point a1,Point a2,Point b1,Point b2)
{
    double c1=Cross(a2-a1,b1-a1),c2=Cross(a2-a1,b2-a1),
            c3=Cross(b2-b1,a1-b1),c4=Cross(b2-b1,a2-b1);
    return dcmp(c1)*dcmp(c2)<0&&dcmp(c3)*dcmp(c4)<0;
}

bool OnSegment(Point p,Point a1,Point a2)
{
    return dcmp(Cross(a1-p,a2-p))==0&&dcmp(Dot(a1-p,a2-p))<0;
}

double PolygonArea(Point*p,int n)
{
    double area=0;
    for(int i=1;i<n-1;++i)
        area+=Cross(p[i]-p[0],p[i+1]-p[0]);
    return area/2;
}

Point getD(Point A,Point B,Point C)
{
    Vector v1=C-B;
    double a1=Angle(A-B,v1);
    v1=Rotate(v1,a1/3);

    Vector v2=B-C;
    double a2=Angle(A-C,v2);
    v2=Rotate(v2,-a2/3);

    return GetLineIntersection(B,v1,C,v2);
}

//Point read()
//{
//  Point p;
//  scanf("%lf %lf",&p.x,&p.y);
//  return p;
//}

int main()
{
//  freopen(".in","r",stdin);
//  freopen(".out","w",stdout);
    int T;
    scanf("%d",&T);
    Point A,B,C,D,E,F;
    while(T--)
    {
//      read(A);read(B);read(C);
        scanf("%lf %lf %lf %lf %lf %lf",&A.x,&A.y,&B.x,&B.y,&C.x,&C.y);
//      cerr<<"A="<<A.x<<" "<<A.y<<endl;
//      cerr<<"B="<<B.x<<" "<<B.y<<endl;
//      cerr<<"C="<<C.x<<" "<<C.y<<endl;
        D=getD(A,B,C);
        E=getD(B,C,A);
        F=getD(C,A,B);
        printf("%lf %lf %lf %lf %lf %lf\n",D.x,D.y,E.x,E.y,F.x,F.y);
    }
    return 0;
}

Hint

注意向量的读入。开始想重载一个read结果是错的,迫不得已改成直接scanf

以后可以在结构体里面实现一个read

UVA11178 Morley's Theorem

原文地址:https://www.cnblogs.com/autoint/p/10125282.html

时间: 2024-10-09 13:34:16

UVA11178 Morley's Theorem的相关文章

UVA11178 Morley&#39;s Theorem(基础模板)

题目链接 题意:给出A,B, C点坐标求D,E,F坐标,其中每个角都被均等分成三份   求出 ABC的角a, 由 BC 逆时针旋转 a/3 得到BD,然后 求出 ACB 的角a2, 然后 由 BC顺时针 旋转 a2 / 3得到 DC,然后就交点 1 #include <iostream> 2 #include <cstdio> 3 #include <algorithm> 4 #include <cstring> 5 #include <cmath&g

UVA 11178 Morley&#39;s Theorem 计算几何

计算几何: 最基本的计算几何,差积  旋转 Morley's Theorem Time Limit: 3000MS Memory Limit: Unknown 64bit IO Format: %lld & %llu Submit Status Description Problem D Morley's Theorem Input: Standard Input Output: Standard Output Morley's theorem states that that the line

11178 - Morley&#39;s Theorem【几何】

不涉及什么算法,只是简单的套用模板进行计算. 如果一个向量进行逆时针旋转,那么可以使用定义的函数 Rotate(v,rad)进行计算. 但是如果进行顺时针旋转,那么需要将rad改为-rad,也就是Rotate(v,-rad)进行计算. 精度的控制为 1e-10; 14112243 11178 Morley's Theorem Accepted C++ 0.055 2014-08-29 11:09:31 #include<cstdio> #include<cstring> #incl

UVa 11178 Morley&#39;s Theorem (几何问题)

题意:给定三角形的三个点,让你求它每个角的三等分线所交的顶点. 析:根据自己的以前的数学知识,应该很容易想到思想,比如D点,就是应该求直线BD和CD的交点, 以前还得自己算,现在计算机帮你算,更方便,主要注意的是旋转是顺时针还是逆时针,不要搞错了. 要求BD和CD就得先求那个夹角ABC和ACD,然后三等分. 代码如下: #include <iostream> #include <cstdio> #include <cstring> #include <cmath&

UVA 11178 Morley&#39;s Theorem(旋转+直线交点)

题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=18543 [思路] 旋转+直线交点 第一个计算几何题,照着书上代码打的. [代码] 1 #include<cstdio> 2 #include<cmath> 3 #include<cstring> 4 using namespace std; 5 6 7 struct Pt { 8 double x,y; 9 Pt(double x=0,d

UVA - 11178 - Morley&#39;s Theorem (计算几何~~)

UVA - 11178 Morley's Theorem Time Limit: 3000MS Memory Limit: Unknown 64bit IO Format: %lld & %llu Submit Status Description Problem D Morley's Theorem Input: Standard Input Output: Standard Output Morley's theorem states that that the lines trisecti

简单几何 UVA 11178 Morley&#39;s Theorem

题目传送门 题意:莫雷定理,求三个点的坐标 分析:训练指南P259,用到了求角度,向量旋转,求射线交点 /************************************************ * Author :Running_Time * Created Time :2015/10/21 星期三 15:56:27 * File Name :UVA_11178.cpp ************************************************/ #include

UVa 11178 (简单练习) Morley&#39;s Theorem

题意: Morley定理:任意三角形中,每个角的三等分线,相交出来的三个点构成一个正三角形. 不过这和题目关系不大,题目所求是正三角形的三个点的坐标,保留6位小数. 分析: 由于对称性,求出D点,EF也是同样的. 用点和向量的形式表示一条直线,向量BA.BC的夹角为a1,则将BC逆时针旋转a1/3可求得 直线BD,同理也可求得直线CD,最后再求交点即可. 1 //#define LOCAL 2 #include <cstdio> 3 #include <cstring> 4 #in

UVA 11178 Morley’s Theorem(莫雷定理 计算几何)

Morley's Theorem Input: Standard Input Output: Standard Output Morley's theorem states that that the lines trisecting the angles of an arbitrary plane triangle meet at the vertices of an equilateral triangle. For example in the figure below the tri-s