目录
- 题目链接
- 题解
- 代码
题目链接
题解
暴力统计是n^2的
考虑统计一段区间对另一端的贡献
对于y值cdq分治,降调一维
对于当前两个分治区间统计上面那部分对下面那部分的贡献
对当前两区间x排序后,对上部分维护单增单调栈,得到距离当前点最近的比她低的点p
对于下面的区间维护一个上凸壳 ,直接在凸壳上二分p统计答案
代码
#include<set>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define gc getchar()
#define pc putchar
#define LL long long
inline int read() {
int x = 0,f = 1;
char c = gc;
while(c < '0' || c > '9') c = gc;
while(c <= '9' && c >= '0') x = x * 10 + c - '0',c = gc;
return x * f;
}
void print(LL x) {
if(x < 0) {
pc('-');
x = -x;
}
if(x >= 10) print(x / 10);
pc(x % 10 + '0');
}
const int maxn = 200007;
struct Point {
int x,y;
} po[maxn];
int n;
bool cmpx(Point a,Point b) { return a.x < b.x; }
bool cmpy(Point a,Point b) { return a.y < b.y; }
int tp,tl;
int sk[maxn],sk2[maxn];
LL ans = 0;
void solve(int l = 1,int r = n) {
if(l == r) return ;
int mid = l + r >> 1;
std::sort(po + l,po + r + 1,cmpy);
std::sort(po + l,po + mid + 1,cmpx); //down
std::sort(po + mid + 1,po + r + 1,cmpx); //up
tp = tl = 0;
int p = l,L,R,to,miid,lim;
for(int i = mid + 1;i <= r;++ i) {
while(tp && po[sk[tp]].y >= po[i].y) tp --;
sk[++ tp] = i;
for(;p <= mid && po[p].x < po[i].x;++ p) {
while(tl && po[sk2[tl]].y <= po[p].y) tl --;
sk2[++ tl] = p;
}
L = 1,R = tl;to = - 1;lim = po[sk[tp - 1]].x;
while(L <= R) {
miid = L + R >> 1;
if(po[sk2[miid]].x > lim) to = miid,R = miid - 1;
else L = miid + 1;
}
if(to != -1) ans += 1ll * tl - 1ll * to + 1;
}
solve(l,mid); solve(mid + 1,r);
}
int main() {
n = read();
for(int i = 1;i <= n;++ i) {
po[i].x = read(),po[i].y = read();
}
po[0].x = po[0].y = -1;
solve();
print(ans);
pc('\n');
}
原文地址:https://www.cnblogs.com/sssy/p/9715479.html
时间: 2024-11-08 23:57:53