洛谷 P3376 【模板】网络最大流

P3376 【模板】网络最大流

题目描述

如题,给出一个网络图,以及其源点和汇点,求出其网络最大流。

输入输出格式

输入格式:

第一行包含四个正整数N、M、S、T,分别表示点的个数、有向边的个数、源点序号、汇点序号。

接下来M行每行包含三个正整数ui、vi、wi,表示第i条有向边从ui出发,到达vi,边权为wi(即该边最大流量为wi)

输出格式:

一行,包含一个正整数,即为该网络的最大流。

输入输出样例

输入样例#1: 复制

4 5 4 3
4 2 30
4 3 20
2 3 20
2 1 30
1 3 40

输出样例#1: 复制

50

说明

时空限制:1000ms,128M

数据规模:

对于30%的数据:N<=10,M<=25

对于70%的数据:N<=200,M<=1000

对于100%的数据:N<=10000,M<=100000

样例说明:

题目中存在3条路径:

4-->2-->3,该路线可通过20的流量

4-->3,可通过20的流量

4-->2-->1-->3,可通过10的流量(边4-->2之前已经耗费了20的流量)

故流量总计20+20+10=50。输出50。

#include<queue>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define NAXN 10001
#define MAXN 100001
using namespace std;
int n,m,s,t;
int tot=1,ans;
int cur[NAXN],lev[NAXN];
int to[MAXN*2],net[MAXN*2],cap[MAXN*2],head[NAXN];
void add(int u,int v,int w){
    to[++tot]=v;cap[tot]=w;net[tot]=head[u];head[u]=tot;
    to[++tot]=u;cap[tot]=0;net[tot]=head[v];head[v]=tot;
}
bool bfs(){
    queue<int>que;
    for(int i=1;i<=n;i++){
        lev[i]=-1;
        cur[i]=head[i];
    }
    lev[s]=0;
    que.push(s);
    while(!que.empty()){
        int now=que.front();
        que.pop();
        for(int i=head[now];i;i=net[i])
            if(lev[to[i]]==-1&&cap[i]>0){
                lev[to[i]]=lev[now]+1;
                que.push(to[i]);
                if(to[i]==t)    return true;
            }
    }
    return false;
}
int dinic(int now,int flow){
    if(now==t)    return flow;
    int rest=0,detal;
    for(int & i=cur[now];i;i=net[i])
        if(cap[i]>0&&lev[to[i]]==lev[now]+1){
            detal=dinic(to[i],min(flow-rest,cap[i]));
            if(detal){
                rest+=detal;
                cap[i]-=detal;
                cap[i^1]+=detal;
                if(rest==flow)    break;
            }
        }
    if(rest!=flow)    lev[now]=-1;
    return rest;
}
int main(){
    cin>>n>>m>>s>>t;
    for(int i=1;i<=m;i++){
        int u,v,w;
        scanf("%d%d%d",&u,&v,&w);
        add(u,v,w);
    }
    while(bfs())
        ans+=dinic(s,0x7fffffff);
    cout<<ans;
}
时间: 2024-12-11 01:08:03

洛谷 P3376 【模板】网络最大流的相关文章

洛谷 P3376 【模板】网络最大流 题解

此文为博主原创题解,转载时请通知博主,并把原文链接放在正文醒目位置. 题目链接:https://www.luogu.org/problemnew/show/3376 题目描述 如题,给出一个网络图,以及其源点和汇点,求出其网络最大流. 输入输出格式 输入格式: 第一行包含四个正整数N.M.S.T,分别表示点的个数.有向边的个数.源点序号.汇点序号. 接下来M行每行包含三个正整数ui.vi.wi,表示第i条有向边从ui出发,到达vi,边权为wi(即该边最大流量为wi) 输出格式: 一行,包含一个正

洛谷 P3376 【【模板】网络最大流】

题目描述 如题,给出一个网络图,以及其源点和汇点,求出其网络最大流. 输入 第一行包含四个正整数N.M.S.T,分别表示点的个数.有向边的个数.源点序号.汇点序号. 接下来M行每行包含三个正整数ui.vi.wi,表示第i条有向边从ui出发,到达vi,边权为wi(即该边最大流量为wi) 输出 一行,包含一个正整数,即为该网络的最大流. 样例输入 4 5 4 3 4 2 30 4 3 20 2 3 20 2 1 30 1 3 40 样例输出 50 数据规模: 对于30%的数据:N<=10,M<=2

【C++】最近公共祖先LCA(Tarjan离线算法)&amp;&amp; 洛谷P3379LCA模板

1.前言 首先我们介绍的算法是LCA问题中的离线算法-Tarjan算法,该算法采用DFS+并查集,再看此算法之前首先你得知道并查集(尽管我相信你如果知道这个的话肯定是知道并查集的),Tarjan算法的优点在于相对稳定,时间复杂度也比较居中,也很容易理解(个人认为). 2.思想 下面详细介绍一下Tarjan算法的思想: 1.任选一个点为根节点,从根节点开始. 2.遍历该点u所有子节点v,并标记这些子节点v已被访问过. 3.若是v还有子节点,返回2,否则下一步. 4.合并v到u上. 5.寻找与当前点

AC自动机(附洛谷P3769模板题)

首先,介绍一下AC自动机(Aho-Corasick automaton),是一种在一个文本串中寻找每一个已给出的模式串的高效算法. 在学习AC自动机之前,你需要先学习Trie树和KMP算法,因为AC自动机正式利用并结合了两者的思想. 说到实际的不同,其实AC自动机只是在Trie树上引入了一个类似KMP中next数组的东西叫做Fail指针. 对于每一个节点,Fail指针指向该节点所代表的字符串中,次长的.在Trie树中存在的后缀(因为最长的在Trie树种存在的后缀就是其本身)所代表的节点. 举例:

洛谷P3375 [模板]KMP字符串匹配

To 洛谷.3375 KMP字符串匹配 题目描述 如题,给出两个字符串s1和s2,其中s2为s1的子串,求出s2在s1中所有出现的位置. 为了减少骗分的情况,接下来还要输出子串的前缀数组next.如果你不知道这是什么意思也不要问,去百度搜[kmp算法]学习一下就知道了. 输入输出格式 输入格式: 第一行为一个字符串,即为s1(仅包含大写字母) 第二行为一个字符串,即为s2(仅包含大写字母) 输出格式: 若干行,每行包含一个整数,表示s2在s1中出现的位置 接下来1行,包括length(s2)个整

洛谷.3803.[模板]多项式乘法(FFT)

题目链接:洛谷.LOJ. FFT相关:快速傅里叶变换(FFT)详解.FFT总结.从多项式乘法到快速傅里叶变换. #include <cmath> #include <cctype> #include <cstdio> #include <algorithm> #define gc() getchar() const int N=1e6+5; const double PI=acos(-1); int n,m; struct Complex { double

洛谷.1919.[模板]A乘B Problem升级版(FFT)

题目链接:洛谷.BZOJ2179 //将乘数拆成 a0*10^n + a1*10^(n-1) + ... + a_n-1的形式 //可以发现多项式乘法就模拟了竖式乘法 所以用FFT即可 注意处理进位 //n位*n位最多就只有2n位了 //论putchar的速度..还是快的 #include <cmath> #include <cstdio> #include <cctype> #include <algorithm> #define gc() getchar

洛谷P3376【模板】网络最大流  Dinic模板

之前的Dinic模板照着刘汝佳写的vector然后十分鬼畜跑得奇慢无比,虽然别人这样写也没慢多少但是自己的就是令人捉急. 改成邻接表之后快了三倍,虽然还是比较慢但是自己比较满意了.虽然一开始ecnt从0开始WA了一发... 之前的码风也十分鬼畜呀缩进只缩1.2格不懂自己怎么想的.. 反正今天就安心划划水. #include<cstdio> #include<cstring> #include<iostream> #include<algorithm> #in

[洛谷P3376]【模板】网络最大流

题目大意:略. 解题思路:最大流木板题,以下是Dinic算法的代码. C++ Code: #include<stdio.h> #include<cctype> #include<vector> #include<algorithm> #include<cstring> #include<queue> using namespace std; #define INF 0x3f3f3f3f char buf[40000020]; int