今天实现一个类,通过三个点得到一个一元二次方程。
主要实现三阶求逆,然后就可以很方便求得一元二次方程的三个系数。
求得一元二次方程解的原理很简单,推导过程如下图:
主要实现在init()函数里面,类代码如下:
// Created by cslzy on 16/5/10. // Copyright © 2016年 CY. All rights reserved. // #include "heads.hpp" //////////////////////////////class parabolaObject ben////////////////////////////// class parabolaObject { private: float a = 0.0; float b = 0.0; float c = 0.0; bool check(); // check three initial points is ok; check initialization is ok bool check_is_ok = false; public: parabolaObject(float , float , float ); parabolaObject(Point2f , Point2f , Point2f ); parabolaObject(); void setParameters(float , float , float ); void init(Point2f, Point2f, Point2f); float value(float x); // return y, where y = a*x^2 + b*x + c void test(); }; void parabolaObject::test() { Point2f p1(0.0, 0.0); Point2f p2(127.5, 255.0); Point2f p3(255.0, 0.0); cout<<"--!Infor: test() function setdefault points:"<<p1<<p2<<p3<<"--"<<endl; init(p1, p2, p3); } void parabolaObject::init(Point2f p1, Point2f p2, Point2f p3) { // cout<<"--Infor:input points are:"<<p1<<p2<<p3<<"--"<<endl; // get 3x3 matrix float x1 = p1.x; float x1_2 = x1 * x1; float y1 = p1.y; float x2 = p2.x; float x2_2 = x2 * x2; float y2 = p2.y; float x3 = p3.x; float x3_2 = x3 * x3; float y3 = p3.y; // is this matrix reversible?利用行列式来判断一下是否可逆。 float matrix = (x1_2*x2*1 + x2_2*x3*1 + x3_2*x1*1) - (x1_2*x3*1 + x2_2*x1*1 + x3_2*x2*1); // test // cout<<"Matrix value:"<<matrix<<endl; if(matrix==0.0) { cout<<"--Error:input point is wrong!--"<<endl; exit(-1); } // get inverse float a11 = (x2 - x3)/matrix; float a12 = -(x2_2 - x3_2)/matrix; float a13 = (x2_2*x3 - x3_2*x2)/matrix; float a21 = -(x1 - x3)/matrix; float a22 = (x1_2 - x3_2)/matrix; float a23 = -(x1_2*x3 - x3_2*x1)/matrix; float a31 = (x1 - x2)/matrix; float a32 = -(x1_2 - x2_2)/matrix; float a33 = (x1_2*x2 - x2_2*x1)/matrix; //下面可以用来验证结果,在线验证网址:http://matrix.reshish.com/inverCalculation.php // cout<<a11<<" "<<a12<<" "<<a13<<" "<<endl; // cout<<a21<<" "<<a22<<" "<<a23<<" "<<endl; // cout<<a31<<" "<<a32<<" "<<a33<<" "<<endl; // get a, b, c a = a11*y1 + a21*y2 + a31*y3; b = a12*y1 + a22*y2 + a32*y3; c = a13*y1 + a23*y2 + a33*y3; cout<<"Y = "<<a<<"x^2 + "<<b<<"x + "<<c<<";"<<endl; } parabolaObject::parabolaObject(float x1, float x2, float x3) { a = x1; b = x2; c = x3; } parabolaObject::parabolaObject(){}; parabolaObject::parabolaObject(Point2f p1, Point2f p2, Point2f p3) { init(p1, p2, p3); } void parabolaObject::setParameters(float x1, float x2, float x3) { a = x1; b = x2; c = x3; } float parabolaObject::value(float x) { return a*x*x + b*x + c; } //////////////////////////////class parabolaObject end////////////////////////////// void test_easyMath() // 测试函数 { Point2f p1(0.0, 0.0); Point2f p2(127.5, 255.0); Point2f p3(255.0, 0.0); parabolaObject test_parabola; // test_parabola.test(); test_parabola.init(p1, p2, p3); float x = 200.0; cout<<"x = "<<x<<" y = "<<test_parabola.value(x)<<endl; cout<<"Input a value:"; cin >> x; do{ cout<<"x = "<<x<<" y = "<<test_parabola.value(x)<<endl; cout<<"Input a value:"; cin >> x; }while (x!=2.0); }
验证逆矩阵:http://matrix.reshish.com/inverCalculation.php
求逆参考:http://mathworld.wolfram.com/MatrixInverse.html
时间: 2024-10-20 16:42:22