Crypto.h以及Crypto.cpp
Crypto.h
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 |
#pragma once #ifndef __CCRYPTO__H__INCLUDED__ #define __CCRYPTO__H__INCLUDED__ #include <string> using namespace std; #define CONST const #define CLASS class #define AS_PUBLIC #define NEW new #define NULLPTR NULL // BASE64 // 十六进制数到ASCII表示 #define HEX_DIGIT_TO_ASCII(x) ((((x) >= 0) && ( (x) <= 9))? (x)+‘0‘: (x)-10+‘A‘) // Encoding and decoding Base64 code AS_PUBLIC CLASS CryptoBase64 { public: // 63rd char used for Base64 code static CONST wchar_t CHAR_63 = ‘*‘; // 64th char used for Base64 code static CONST wchar_t CHAR_64 = ‘-‘; // Char used for padding static CONST wchar_t CHAR_PAD = ‘[‘; public: // Encodes binary data to Base64 code // Returns size of encoded data. static int Encode(const unsigned char* inData, int dataLength, wstring& outCode); // Decodes Base64 code to binary data // Returns size of decoded data. static int Decode(const wstring& inCode, int codeLength, unsigned char* outData); // Returns maximum size of decoded data based on size of Base64 code. static int GetDataLength(int codeLength); // Returns maximum length of Base64 code based on size of uncoded data. static int GetCodeLength(int dataLength); }; /////////////////////////////////////TEA加密////////////////////////////////////////////////// #define ENCODE_SINGATURE (DWORD)0x4B434E45 AS_PUBLIC CLASS CryptoTEA { public: /// <summary> /// 使用TEA算法加密64bit数据,即8个字节。 /// </summary> /// <param name="lpData"> /// 64bit(8个字节)的需要加密数据首地址。 /// </param> /// <param name="lpKey"> /// 128bit(即16个字节)的密钥首地址。 /// </param> static void EncipherQword( void *lpData, const void *lpKey ); /// <summary> /// 使用TEA算法解密bit数据,即个字节。 /// </summary> /// <param name="lpData"> /// 64bit(8个字节)的需要解密数据首地址。 /// </param> /// <param name="lpKey"> /// 128bit(即个字节)的密钥首地址。 /// </param> static void DecipherQword( void *lpData, const void *lpKey ); /// <summary> /// 加密内存区域。 /// </summary> /// <param name="lpData"> /// [IN/OUT]加密数据缓冲区首地址。 /// </param> /// <param name="nBufLen"> /// 加密数据缓冲区长度,必须圆整为的倍数。 /// </param> /// <param name="lpKey"> /// 128位密钥长度,必须由调用方保证至少字节长。 /// </param> /// <returns> /// 加密数据的实际长度,<0 则表示失败。 /// </returns> static int EncipherMemory(void* lpData, int nBufLen, const void *lpKey ); /// <summary> /// 解密内存区。 /// </summary> /// <param name="lpData"> /// [IN/OUT]解密数据缓冲区首地址。 /// </param> /// <param name="nBufLen"> /// 解密数据缓冲区长度,必须是8的倍数。 /// </param> /// <param name="lpKey"> /// 128bit密钥。 /// </param> /// <returns> /// 解密后数据的长度,<0 则表示失败。 /// </returns> static int DecipherMemory(void* lpData, int nBufLen, const void *lpKey); /// <summary> /// 加密字符串。 /// </summary> /// <param name="Source"> /// 源字符串。 /// </param> /// <param name="Result"> /// 结果字符串。 /// </param> /// <param name="Key"> /// 128位密钥。 /// </param> /// <returns> /// >=0 表示成功,<0表示失败。 /// </returns> static int EncipherString( const std::wstring& Source, std::wstring& Result, const void* Key ); /// <summary> /// ASCII字符转换为进制数。 /// </summary> /// <param name="chr"> /// 16进制字符ASCII表示。 /// </param> /// <returns> /// 16进制数值。 /// </returns> static unsigned char Asc2Hex( wchar_t chr ); /// <summary> /// 解密字符串。 /// </summary> /// <param name="Source"> /// 源字符串。 /// </param> /// <param name="Result"> /// 结果字符串。 /// </param> /// <param name="Key"> /// 128位密钥。 /// </param> /// <returns> /// >=0 表示成功,<0表示失败。 /// </returns> static int DecipherString( const std::wstring& Source, std::wstring& Result, const void* Key ); /// <summary> /// 随机产生加密的密钥。 /// </summary> /// <param name="EncKey"> /// 用于保存加密密钥。 /// </param> static void GenerateEncKey( DWORD* EncKey ); }; //////////////////////////////////////// MD5/////////////////////////////////////////// /* MD5 context. */ typedef struct { unsigned long state[4]; /* state (ABCD) */ unsigned long count[2]; /* number of bits, modulo 2^64 (lsb first) */ unsigned char buffer[64]; /* input buffer */ } MD5_CONTEXT; #define S11 7 #define S12 12 #define S13 17 #define S14 22 #define S21 5 #define S22 9 #define S23 14 #define S24 20 #define S31 4 #define S32 11 #define S33 16 #define S34 23 #define S41 6 #define S42 10 #define S43 15 #define S44 21 /* F, G, H and I are basic MD5 functions. */ #define F(x, y, z) (((x) & (y)) | ((~x) & (z))) #define G(x, y, z) (((x) & (z)) | ((y) & (~z))) #define H(x, y, z) ((x) ^ (y) ^ (z)) #define I(x, y, z) ((y) ^ ((x) | (~z))) /* ROTATE_LEFT rotates x left n bits. */ #define ROTATE_LEFT(x, n) (((x) << (n)) | ((x) >> (32-(n)))) /* FF, GG, HH, and II transformations for rounds 1, 2, 3, and 4. Rotation is separate from addition to prevent recomputation. */ #define FF(a, b, c, d, x, s, ac) { \ (a) += F ((b), (c), (d)) + (x) + (unsigned long)(ac); \ (a) = ROTATE_LEFT ((a), (s)); \ (a) += (b); \ } #define GG(a, b, c, d, x, s, ac) { \ (a) += G ((b), (c), (d)) + (x) + (unsigned long)(ac); \ (a) = ROTATE_LEFT ((a), (s)); \ (a) += (b); \ } #define HH(a, b, c, d, x, s, ac) { \ (a) += H ((b), (c), (d)) + (x) + (unsigned long)(ac); \ (a) = ROTATE_LEFT ((a), (s)); \ (a) += (b); \ } #define II(a, b, c, d, x, s, ac) { \ (a) += I ((b), (c), (d)) + (x) + (unsigned long)(ac); \ (a) = ROTATE_LEFT ((a), (s)); \ (a) += (b); \ } class CryptoMD5 { public: /* Note: Replace "for loop" with standard memset if possible. */ static void MD5Memset(unsigned char* output, int value, unsigned int len); /* Note: Replace "for loop" with standard memcpy if possible. */ static void MD5Memcpy(unsigned char* output, unsigned char* input, unsigned int len); /* Encodes input (unsigned long) into output (unsigned char). Assumes len is a multiple of 4. */ static void Encode(unsigned char *output, unsigned long *input, unsigned int len); /* Decodes input (unsigned char) into output (unsigned long). Assumes len is a multiple of 4. */ static void Decode(unsigned long *output, unsigned char *input, unsigned int len); /* MD5 basic transformation. Transforms state based on block. */ static void MD5Transform(unsigned long state[4], unsigned char block[64]); /* MD5 initialization. Begins an MD5 operation, writing a new context. */ static void MD5Init(MD5_CONTEXT *context); /* MD5 block update operation. Continues an MD5 message-digest operation, processing another message block, and updating the context. */ static void MD5Update(MD5_CONTEXT *context, unsigned char *input, unsigned int inputLen); /* MD5 finalization. Ends an MD5 message-digest operation, writing the the message digest and zeroizing the context. */ static void MD5Final(unsigned char digest[16], MD5_CONTEXT *context); static CString MD5String (std::wstring Source); }; #endif |
Crypto.cpp
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 |
#include "stdafx.h" #include "Crypto.h" unsigned char PADDING[64] = { 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; // Encodes binary data to Base64 code // Returns size of encoded data. int CryptoBase64::Encode(const unsigned char* inData, int dataLength, wstring& outCode) { wstring result; // output buffer which holds code during conversation int len = GetCodeLength( dataLength ); wchar_t* out = new wchar_t[ len ]; // charachers used by Base64 static const wchar_t alph[] = { ‘A‘,‘B‘,‘C‘,‘D‘,‘E‘,‘F‘,‘G‘,‘H‘,‘I‘,‘J‘,‘K‘,‘L‘,‘M‘,‘N‘,‘O‘,‘P‘,‘Q‘,‘R‘,‘S‘,‘T‘,‘U‘,‘V‘,‘W‘,‘X‘,‘Y‘,‘Z‘, ‘a‘,‘b‘,‘c‘,‘d‘,‘e‘,‘f‘,‘g‘,‘h‘,‘i‘,‘j‘,‘k‘,‘l‘,‘m‘,‘n‘,‘o‘,‘p‘,‘q‘,‘r‘,‘s‘,‘t‘,‘u‘,‘v‘,‘w‘,‘x‘,‘y‘,‘z‘, ‘0‘,‘1‘,‘2‘,‘3‘,‘4‘,‘5‘,‘6‘,‘7‘,‘8‘,‘9‘,CHAR_63,CHAR_64 }; // mask - first six bits const int mask = 0x3F; // used as temp 24-bits buffer union { unsigned char bytes[ 4 ]; unsigned int block; } buffer; // coversation is done by taking three bytes at time of input data int temp // then four six-bits values are extracted, converted to base64 characters // and at the end they are written to output buffer for( int i = 0, j = 0, left = dataLength; i < dataLength; i += 3, j += 4, left -= 3 ) { //------------------------ // filling temp buffer // get first byte and puts it at MSB position in temp buffer buffer.bytes[ 2 ] = inData[ i ]; // more data left? if( left > 1 ) { // get second byte and puts it at middle position in temp buffer buffer.bytes[ 1 ] = inData[ i + 1 ]; // more data left? if( left > 2 ) // get third byte and puts it at LSB position in temp buffer buffer.bytes[ 0 ] = inData[ i + 2 ]; else // zero-padding of input data (last bytes) buffer.bytes[ 0 ] = 0; } else { // zero-padding of input data (last two bytes) buffer.bytes[ 1 ] = 0; buffer.bytes[ 0 ] = 0; } //------------------------ // constructing code from temp buffer // and putting it in output buffer // extract first and second six-bit value from temp buffer // and convert is to base64 character out[ j ] = alph[ ( buffer.block >> 18 ) & mask ]; out[ j + 1 ] = alph[ ( buffer.block >> 12 ) & mask ]; // more data left? if( left > 1 ) { // extract third six-bit value from temp buffer // and convert it to base64 character out[ j + 2 ] = alph[ ( buffer.block >> 6 ) & mask ]; // more data left? if( left > 2 ) // extract forth six-bit value from temp buffer // and convert it to base64 character out[ j + 3 ] = alph[ buffer.block & mask ]; else // pad output code out[ j + 3 ] = CHAR_PAD; } else { // pad output code out[ j + 2 ] = CHAR_PAD; out[ j + 3 ] = CHAR_PAD; } } outCode.clear(); outCode.append( out, len ); delete[] out; return len; } // Decodes Base64 code to binary data // Returns size of decoded data. int CryptoBase64::Decode(const wstring& inCode, int codeLength, unsigned char* outData) { // used as temp 24-bits buffer union { unsigned char bytes[ 4 ]; unsigned int block; } buffer; buffer.block = 0; // number of decoded bytes int j = 0; for( int i = 0; i < codeLength; i++ ) { // position in temp buffer int m = i % 4; wchar_t x = inCode[ i ]; int val = 0; // converts base64 character to six-bit value if( x >= ‘A‘ && x <= ‘Z‘ ) val = x - ‘A‘; else if( x >= ‘a‘ && x <= ‘z‘ ) val = x - ‘a‘ + ‘Z‘ - ‘A‘ + 1; else if( x >= ‘0‘ && x <= ‘9‘ ) val = x - ‘0‘ + ( ‘Z‘ - ‘A‘ + 1 ) * 2; else if( x == CHAR_63 ) val = 62; else if( x == CHAR_64 ) val = 63; // padding chars are not decoded and written to output buffer if( x != CHAR_PAD ) buffer.block |= val << ( 3 - m ) * 6; else m--; // temp buffer is full or end of code is reached // flushing temp buffer if( m == 3 || x == CHAR_PAD ) { // writes byte from temp buffer (combined from two six-bit values) to output buffer outData[ j++ ] = buffer.bytes[ 2 ]; // more data left? if( x != CHAR_PAD || m > 1 ) { // writes byte from temp buffer (combined from two six-bit values) to output buffer outData[ j++ ] = buffer.bytes[ 1 ]; // more data left? if( x != CHAR_PAD || m > 2 ) // writes byte from temp buffer (combined from two six-bit values) to output buffer outData[ j++ ] = buffer.bytes[ 0 ]; } // restarts temp buffer buffer.block = 0; } // when padding char is reached it is the end of code if( x == CHAR_PAD ) break; } return j; } // Returns maximum size of decoded data based on size of Base64 code. int CryptoBase64::GetDataLength(int codeLength) { return codeLength - codeLength / 4; } // Returns maximum length of Base64 code based on size of uncoded data. int CryptoBase64::GetCodeLength(int dataLength) { int len = dataLength + dataLength / 3 + (int)( dataLength % 3 != 0 ); // output code size must be multiple of 4 bytes if( len % 4 ) len += 4 - len % 4; return len; } /// <summary> /// 使用TEA算法加密bit数据,即个字节。 /// </summary> /// <param name="lpData"> /// 64bit(8个字节)的需要加密数据首地址。 /// </param> /// <param name="lpKey"> /// 128bit(即16个字节)的密钥首地址。 /// </param> void CryptoTEA::EncipherQword( void *lpData, const void *lpKey ) { const unsigned long cnDelta = 0x9E3779B9; register unsigned long y = ( ( unsigned long * )lpData )[0], z = ( ( unsigned long * )lpData )[1]; register unsigned long sum = 0; unsigned long a = ( ( unsigned long * )lpKey )[0], b = ( ( unsigned long * )lpKey )[1]; unsigned long c = ( ( unsigned long * )lpKey )[2], d = ( ( unsigned long * )lpKey )[3]; int n = 32; while ( n-- > 0 ) { sum += cnDelta; y += ( z << 4 ) + a ^ z + sum ^ ( z >> 5 ) + b; z += ( y << 4 ) + c ^ y + sum ^ ( y >> 5 ) + d; } ( ( unsigned long * )lpData )[0] = y; ( ( unsigned long * )lpData )[1] = z; } /// <summary> /// 使用TEA算法解密bit数据,即个字节。 /// </summary> /// <param name="lpData"> /// 64bit(8个字节)的需要解密数据首地址。 /// </param> /// <param name="lpKey"> /// 128bit(即个字节)的密钥首地址。 /// </param> void CryptoTEA::DecipherQword( void *lpData, const void *lpKey ) { const unsigned long cnDelta = 0x9E3779B9; register unsigned long y = ( ( unsigned long * )lpData )[0], z = ( ( unsigned long * )lpData )[1]; register unsigned long sum = 0xC6EF3720; unsigned long a = ( ( unsigned long * )lpKey )[0], b = ( ( unsigned long * )lpKey )[1]; unsigned long c = ( ( unsigned long * )lpKey )[2], d = ( ( unsigned long * )lpKey )[3]; int n = 32; // sum = delta << 5, in general sum = delta * n while ( n-- > 0 ) { z -= ( y << 4 ) + c ^ y + sum ^ ( y >> 5 ) + d; y -= ( z << 4 ) + a ^ z + sum ^ ( z >> 5 ) + b; sum -= cnDelta; } ( ( unsigned long * )lpData )[0] = y; ( ( unsigned long * )lpData )[1] = z; } /// <summary> /// 加密内存区域。 /// </summary> /// <param name="lpData"> /// [IN/OUT]加密数据缓冲区首地址。 /// </param> /// <param name="nBufLen"> /// 加密数据缓冲区长度,必须圆整为的倍数。 /// </param> /// <param name="lpKey"> /// 128位密钥长度,必须由调用方保证至少字节长。 /// </param> /// <returns> /// 加密数据的实际长度,<0 则表示失败。 /// </returns> int CryptoTEA::EncipherMemory(void* lpData, int nBufLen, const void *lpKey ) { if( nBufLen <= 0 ) return 0; if( lpData == NULL || lpKey == NULL || ( nBufLen %8 != 0 ) ) return (-9); // 无效参数 /// 加密数据 unsigned char* pDest = (unsigned char*)lpData; int n = nBufLen >> 3; while ( n-- ) { EncipherQword( pDest, lpKey ); pDest += 8; } return nBufLen; } /// <summary> /// 解密内存区。 /// </summary> /// <param name="lpData"> /// [IN/OUT]解密数据缓冲区首地址。 /// </param> /// <param name="nBufLen"> /// 解密数据缓冲区长度,必须是的倍数。 /// </param> /// <param name="lpKey"> /// 128bit密钥。 /// </param> /// <returns> /// 解密后数据的长度,<0 则表示失败。 /// </returns> int CryptoTEA::DecipherMemory(void* lpData, int nBufLen, const void *lpKey) { if( nBufLen <= 0 ) return 0; if( lpData == NULL || lpKey == NULL || ( nBufLen %8 != 0 ) ) return (-9); // 无效参数 /// 解密 unsigned char* pDest = (unsigned char*)lpData; int n = nBufLen >> 3; while ( n-- ) { DecipherQword( pDest, lpKey ); pDest += 8; } return nBufLen; } /// <summary> /// 加密字符串。 /// </summary> /// <param name="Source"> /// 源字符串。 /// </param> /// <param name="Result"> /// 结果字符串。 /// </param> /// <param name="Key"> /// 128位密钥。 /// </param> /// <returns> /// >=0 表示成功,<0表示失败。 /// </returns> int CryptoTEA::EncipherString( const std::wstring& Source, std::wstring& Result, const void* Key ) { Result.clear(); if( Key == NULL ) return (-9); // 无效参数 if( Source.empty() ) return 0; // 确定缓冲区长度 DWORD SourceLength = (DWORD)Source.length(); DWORD EncodeNumber = ENCODE_SINGATURE; int BufferLen = (int)SourceLength*sizeof(wchar_t); BufferLen = ((BufferLen + 7) >> 3) << 3; // 圆整为的倍数 BufferLen += 8; unsigned char* Buffer = new unsigned char[ BufferLen]; if( Buffer == NULL ) return (-3); // out of memory memset( Buffer, 0, BufferLen ); memcpy( Buffer+0, &EncodeNumber, sizeof(DWORD) ); memcpy( Buffer+4, &SourceLength, sizeof(DWORD) ); memcpy( Buffer+8, Source.c_str(),SourceLength*sizeof(wchar_t) ); // 进行加密 int rc = EncipherMemory( Buffer, BufferLen, Key ); if( rc < 0 ) { delete[] Buffer; return rc; } // 构造结果 Result.resize( BufferLen*2 ); for( int Index = 0; Index < BufferLen; Index++ ) { Result[2*Index+0] = HEX_DIGIT_TO_ASCII( (Buffer[Index] >> 4 ) & 0x0F); Result[2*Index+1] = HEX_DIGIT_TO_ASCII( Buffer[Index] & 0x0F ); } // 释放内存并返回 delete[] Buffer; return (int)Result.length(); } /// <summary> /// ASCII字符转换为进制数。 /// </summary> /// <param name="chr"> /// 16进制字符ASCII表示。 /// </param> /// <returns> /// 16进制数值。 /// </returns> unsigned char CryptoTEA::Asc2Hex( wchar_t chr ) { if( chr >= ‘0‘ && chr <= ‘9‘ ) return (chr - ‘0‘); if( chr >= ‘a‘ && chr <= ‘f‘ ) return ( chr - ‘a‘ + 10 ); if( chr >= ‘A‘ && chr <= ‘F‘ ) return ( chr - ‘A‘ + 10 ); // 无效字符 return (-1); } /// <summary> /// 解密字符串。 /// </summary> /// <param name="Source"> /// 源字符串。 /// </param> /// <param name="Result"> /// 结果字符串。 /// </param> /// <param name="Key"> /// 128位密钥。 /// </param> /// <returns> /// >=0 表示成功,<0表示失败。 /// </returns> int CryptoTEA::DecipherString( const std::wstring& Source, std::wstring& Result, const void* Key ) { Result.clear(); //============================================================================== // 检查输入 //============================================================================== if( Key == NULL ) return (-9); // 无效参数 if( Source.empty() ) return 0; // 检查输入是否有效 if( Source.length() % 16 != 0 ) return (-9); // 输入必须是的倍数 // 输入必须是进制数0-9 A-F int Index = 0; for( Index = 0; Index < (int)Source.length(); Index++ ) { // 检查是否为数字 if( Source[Index] >= ‘0‘ && Source[Index] <= ‘9‘ ) continue; // 检查是否为A-F if( Source[Index] >= ‘a‘ && Source[Index] <= ‘f‘ ) continue; // 检查是否为A-F if( Source[Index] >= ‘A‘ && Source[Index] <= ‘F‘ ) continue; // 无效输入 return (-9); } //============================================================================== // 准备缓冲区 //============================================================================== unsigned char Chr = 0; int BufferLen = (int)Source.length()/2; unsigned char* Buffer = new unsigned char[BufferLen]; if( Buffer == NULL ) return (-3); // Out of memory for( Index = 0;Index < BufferLen; Index++ ) { Chr = Asc2Hex( Source[2*Index+0] ); Chr <<= 4; Chr |= Asc2Hex( Source[2*Index+1] ); Buffer[Index] = Chr; } //============================================================================== // 进行解密 //============================================================================== int rc = DecipherMemory( Buffer,BufferLen,Key ); if( rc < 0 ) { delete[] Buffer; return rc; } // 前面字节为长度信息 DWORD SourceLength = 0; DWORD EncodeNumber = 0; memcpy( &EncodeNumber,Buffer+0, sizeof(DWORD) ); memcpy( &SourceLength,Buffer+4, sizeof(DWORD) ); if( ( EncodeNumber != ENCODE_SINGATURE ) || (SourceLength > ( BufferLen- 8)/sizeof(wchar_t)) ) { delete[] Buffer; return (-15); // 无效数据 } // 准备结果 Result.assign( (const wchar_t*)(Buffer +8) , (size_t)SourceLength ); // 返回 delete[] Buffer; return (int)Result.length(); } /// <summary> /// 随机产生加密的密钥。 /// </summary> /// <param name="EncKey"> /// 用于保存加密密钥。 /// </param> void CryptoTEA::GenerateEncKey( DWORD* EncKey ) { DWORD RandNum = 0; srand( (unsigned int)GetTickCount() ); for( int index = 0; index < 4; index++ ) { RandNum = (DWORD)rand(); RandNum <<= 16; RandNum |= (DWORD)rand(); EncKey[index] = RandNum; } } /* Note: Replace "for loop" with standard memset if possible. */ void CryptoMD5::MD5Memset(unsigned char* output, int value, unsigned int len) { unsigned int i; for (i = 0; i < len; i++) ((char *)output)[i] = (char)value; } /* Note: Replace "for loop" with standard memcpy if possible. */ void CryptoMD5::MD5Memcpy(unsigned char* output, unsigned char* input, unsigned int len) { unsigned int i; for (i = 0; i < len; i++) output[i] = input[i]; } /* Encodes input (unsigned long) into output (unsigned char). Assumes len is a multiple of 4. */ void CryptoMD5::Encode(unsigned char *output, unsigned long *input, unsigned int len) { unsigned int i, j; for (i = 0, j = 0; j < len; i++, j += 4) { output[j] = (unsigned char)(input[i] & 0xff); output[j+1] = (unsigned char)((input[i] >> 8) & 0xff); output[j+2] = (unsigned char)((input[i] >> 16) & 0xff); output[j+3] = (unsigned char)((input[i] >> 24) & 0xff); } } /* Decodes input (unsigned char) into output (unsigned long). Assumes len is a multiple of 4. */ void CryptoMD5::Decode(unsigned long *output, unsigned char *input, unsigned int len) { unsigned int i, j; for (i = 0, j = 0; j < len; i++, j += 4) output[i] = ((unsigned long)input[j]) | (((unsigned long)input[j+1]) << 8) | (((unsigned long)input[j+2]) << 16) | (((unsigned long)input[j+3]) << 24); } /* MD5 basic transformation. Transforms state based on block. */ void CryptoMD5::MD5Transform(unsigned long state[4], unsigned char block[64]) { unsigned long a = state[0], b = state[1], c = state[2], d = state[3], x[16]; Decode(x, block, 64); /* Round 1 */ FF (a, b, c, d, x[ 0], S11, 0xd76aa478); /* 1 */ FF (d, a, b, c, x[ 1], S12, 0xe8c7b756); /* 2 */ FF (c, d, a, b, x[ 2], S13, 0x242070db); /* 3 */ FF (b, c, d, a, x[ 3], S14, 0xc1bdceee); /* 4 */ FF (a, b, c, d, x[ 4], S11, 0xf57c0faf); /* 5 */ FF (d, a, b, c, x[ 5], S12, 0x4787c62a); /* 6 */ FF (c, d, a, b, x[ 6], S13, 0xa8304613); /* 7 */ FF (b, c, d, a, x[ 7], S14, 0xfd469501); /* 8 */ FF (a, b, c, d, x[ 8], S11, 0x698098d8); /* 9 */ FF (d, a, b, c, x[ 9], S12, 0x8b44f7af); /* 10 */ FF (c, d, a, b, x[10], S13, 0xffff5bb1); /* 11 */ FF (b, c, d, a, x[11], S14, 0x895cd7be); /* 12 */ FF (a, b, c, d, x[12], S11, 0x6b901122); /* 13 */ FF (d, a, b, c, x[13], S12, 0xfd987193); /* 14 */ FF (c, d, a, b, x[14], S13, 0xa679438e); /* 15 */ FF (b, c, d, a, x[15], S14, 0x49b40821); /* 16 */ /* Round 2 */ GG (a, b, c, d, x[ 1], S21, 0xf61e2562); /* 17 */ GG (d, a, b, c, x[ 6], S22, 0xc040b340); /* 18 */ GG (c, d, a, b, x[11], S23, 0x265e5a51); /* 19 */ GG (b, c, d, a, x[ 0], S24, 0xe9b6c7aa); /* 20 */ GG (a, b, c, d, x[ 5], S21, 0xd62f105d); /* 21 */ GG (d, a, b, c, x[10], S22, 0x2441453); /* 22 */ GG (c, d, a, b, x[15], S23, 0xd8a1e681); /* 23 */ GG (b, c, d, a, x[ 4], S24, 0xe7d3fbc8); /* 24 */ GG (a, b, c, d, x[ 9], S21, 0x21e1cde6); /* 25 */ GG (d, a, b, c, x[14], S22, 0xc33707d6); /* 26 */ GG (c, d, a, b, x[ 3], S23, 0xf4d50d87); /* 27 */ GG (b, c, d, a, x[ 8], S24, 0x455a14ed); /* 28 */ GG (a, b, c, d, x[13], S21, 0xa9e3e905); /* 29 */ GG (d, a, b, c, x[ 2], S22, 0xfcefa3f8); /* 30 */ GG (c, d, a, b, x[ 7], S23, 0x676f02d9); /* 31 */ GG (b, c, d, a, x[12], S24, 0x8d2a4c8a); /* 32 */ /* Round 3 */ HH (a, b, c, d, x[ 5], S31, 0xfffa3942); /* 33 */ HH (d, a, b, c, x[ 8], S32, 0x8771f681); /* 34 */ HH (c, d, a, b, x[11], S33, 0x6d9d6122); /* 35 */ HH (b, c, d, a, x[14], S34, 0xfde5380c); /* 36 */ HH (a, b, c, d, x[ 1], S31, 0xa4beea44); /* 37 */ HH (d, a, b, c, x[ 4], S32, 0x4bdecfa9); /* 38 */ HH (c, d, a, b, x[ 7], S33, 0xf6bb4b60); /* 39 */ HH (b, c, d, a, x[10], S34, 0xbebfbc70); /* 40 */ HH (a, b, c, d, x[13], S31, 0x289b7ec6); /* 41 */ HH (d, a, b, c, x[ 0], S32, 0xeaa127fa); /* 42 */ HH (c, d, a, b, x[ 3], S33, 0xd4ef3085); /* 43 */ HH (b, c, d, a, x[ 6], S34, 0x4881d05); /* 44 */ HH (a, b, c, d, x[ 9], S31, 0xd9d4d039); /* 45 */ HH (d, a, b, c, x[12], S32, 0xe6db99e5); /* 46 */ HH (c, d, a, b, x[15], S33, 0x1fa27cf8); /* 47 */ HH (b, c, d, a, x[ 2], S34, 0xc4ac5665); /* 48 */ /* Round 4 */ II (a, b, c, d, x[ 0], S41, 0xf4292244); /* 49 */ II (d, a, b, c, x[ 7], S42, 0x432aff97); /* 50 */ II (c, d, a, b, x[14], S43, 0xab9423a7); /* 51 */ II (b, c, d, a, x[ 5], S44, 0xfc93a039); /* 52 */ II (a, b, c, d, x[12], S41, 0x655b59c3); /* 53 */ II (d, a, b, c, x[ 3], S42, 0x8f0ccc92); /* 54 */ II (c, d, a, b, x[10], S43, 0xffeff47d); /* 55 */ II (b, c, d, a, x[ 1], S44, 0x85845dd1); /* 56 */ II (a, b, c, d, x[ 8], S41, 0x6fa87e4f); /* 57 */ II (d, a, b, c, x[15], S42, 0xfe2ce6e0); /* 58 */ II (c, d, a, b, x[ 6], S43, 0xa3014314); /* 59 */ II (b, c, d, a, x[13], S44, 0x4e0811a1); /* 60 */ II (a, b, c, d, x[ 4], S41, 0xf7537e82); /* 61 */ II (d, a, b, c, x[11], S42, 0xbd3af235); /* 62 */ II (c, d, a, b, x[ 2], S43, 0x2ad7d2bb); /* 63 */ II (b, c, d, a, x[ 9], S44, 0xeb86d391); /* 64 */ state[0] += a; state[1] += b; state[2] += c; state[3] += d; /* Zeroize sensitive information. */ MD5Memset((unsigned char*)x, 0, sizeof(x)); } /* MD5 initialization. Begins an MD5 operation, writing a new context. */ void CryptoMD5::MD5Init(MD5_CONTEXT *context) { context->count[0] = context->count[1] = 0; /* Load magic initialization constants. */ context->state[0] = 0x67452301; context->state[1] = 0xefcdab89; context->state[2] = 0x98badcfe; context->state[3] = 0x10325476; } /* MD5 block update operation. Continues an MD5 message-digest operation, processing another message block, and updating the context. */ void CryptoMD5::MD5Update(MD5_CONTEXT *context, unsigned char *input, unsigned int inputLen) { unsigned int i, index, partLen; /* Compute number of bytes mod 64 */ index = (unsigned int)((context->count[0] >> 3) & 0x3F); /* Update number of bits */ if ((context->count[0] += ((unsigned long)inputLen << 3)) < ((unsigned long)inputLen << 3)) context->count[1]++; context->count[1] += ((unsigned long)inputLen >> 29); partLen = 64 - index; /* Transform as many times as possible. */ if (inputLen >= partLen) { MD5Memcpy((unsigned char*)&context->buffer[index], (unsigned char*)input, partLen); MD5Transform(context->state, context->buffer); for (i = partLen; i + 63 < inputLen; i += 64) MD5Transform(context->state, &input[i]); index = 0; } else i = 0; /* Buffer remaining input */ MD5Memcpy((unsigned char*)&context->buffer[index], (unsigned char*)&input[i], inputLen-i); } /* MD5 finalization. Ends an MD5 message-digest operation, writing the the message digest and zeroizing the context. */ void CryptoMD5::MD5Final(unsigned char digest[16], MD5_CONTEXT *context) { unsigned char bits[8]; unsigned int index, padLen; /* Save number of bits */ Encode(bits, context->count, 8); /* Pad out to 56 mod 64. */ index = (unsigned int)((context->count[0] >> 3) & 0x3f); padLen = (index < 56) ? (56 - index) : (120 - index); MD5Update(context, PADDING, padLen); /* Append length (before padding) */ MD5Update(context, bits, 8); /* Store state in digest */ Encode(digest, context->state, 16); /* Zeroize sensitive information. */ MD5Memset((unsigned char*)context, 0, sizeof (*context)); } CString CryptoMD5::MD5String (std::wstring Source) { int size= Source.size(); BYTE* pSource = new BYTE[size*2]; ZeroMemory(pSource,size*2); WideCharToMultiByte(CP_ACP, 0, Source.c_str(), size, (LPSTR)pSource , size*2, NULL, NULL); MD5_CONTEXT context; BYTE digest[16]={0}; MD5Init(&context); MD5Update(&context, pSource,Source.size()*2); MD5Final(digest,&context); delete []pSource; wchar_t CheckCode[33] = { 0 }; // 保存校验码,个数+null-terminal for (int Index = 0; Index < 16; ++Index) { CheckCode[2*Index ] = HEX_DIGIT_TO_ASCII( (digest[Index] >> 4 ) & 0x0F); CheckCode[2*Index+1] = HEX_DIGIT_TO_ASCII( digest[Index] & 0x0F ); } CString str(CheckCode); return str; } |