「ZOJ 1354」Extended Lights Out「高斯消元」

题意:给定一个\(5\times 6\)的棋盘的\(01\)状态,每次操作可以使它自己和周围四个格子状态取反,求如何操作,输出一个\(01\)矩阵

题解:这题可以通过枚举第一行的状态然后剩下递推来做,但是这里还是写一种好理解的高斯消元解异或方程组的方法。

对于每个格子列一个方程,未知数就是要求的答案矩阵,系数的话把它周围的设为1,其他设为0。然后右边的常数项为它本来的状态。然后就高斯消元嘛。

我用了bitset优化,实际上可能unsigned int或者long long也可以。

#include <algorithm>
#include <bitset>
#include <cstdio>
using namespace std;

const int n = 5;
const int m = 6;
const int N = 34;
const int dx[] = {0, 1, 0, -1, 0};
const int dy[] = {0, 0, 1, 0, -1};

int f[N];
bitset<N> a[N];

int pos(int x, int y) {
    return (x - 1) * m + y;
}

void gauss(int n) {
    for(int i = 1, j; i <= n; i ++) {
        for(int k = i; k <= n; k ++) if(a[k][i]) j = k, k = n;
        if(i != j) swap(a[i], a[j]);
        for(j = i + 1; j <= n; j ++) if(a[j][i]) a[j] ^= a[i];
    }
    for(int i = n - 1; i >= 1; i --)
        for(int j = i + 1; j <= n; j ++)
            if(a[j][n + 1] && a[i][j]) a[i][n + 1] = !a[i][n + 1];
}

int main() {
    int test; scanf("%d", &test);
    for(int t = 1; t <= test; t ++) {
        for(int i = 1; i <= n; i ++)
            for(int j = 1; j <= m; j ++)
                scanf("%d", &f[pos(i, j)]);
        for(int i = 1; i <= n; i ++)
            for(int j = 1; j <= m; j ++) {
                int p = pos(i, j); a[p].reset();
                a[p][n * m + 1] = f[p];
                for(int k = 0; k < 5; k ++) {
                    int x = i + dx[k], y = j + dy[k];
                    if(x >= 1 && x <= n && y >= 1 && y <= m) {
                        a[p][pos(x, y)] = 1;
                    }
                }
            }
        gauss(n * m);
        printf("PUZZLE #%d\n", t);
        for(int i = 1; i <= n; i ++)
            for(int j = 1; j <= m; j ++)
                printf("%d%c", (int) a[pos(i, j)][n * m + 1], " \n"[j == m]);
    }
    return 0;
}

原文地址:https://www.cnblogs.com/hongzy/p/10356538.html

时间: 2024-11-05 19:35:08

「ZOJ 1354」Extended Lights Out「高斯消元」的相关文章

uva 1560 - Extended Lights Out(枚举 | 高斯消元)

题目链接:uva 1560 - Extended Lights Out 题目大意:给定一个5?6的矩阵,每个位置上有一个灯和开关,初始矩阵表示灯的亮暗情况,如果按了这个位置的开关,将会导致周围包括自己位置的灯状态变换,求一个按开关位置,保证所有灯都灭掉. 解题思路: 枚举,枚举第一行的状态,然后递推出后面四行的状态. 高斯消元,对于每个位置对定变量,这样列出30个方程求解. C++ 枚举 #include <cstdio> #include <cstring> #include &

【POJ】1222 EXTENDED LIGHTS OUT(高斯消元)

http://poj.org/problem?id=1222 竟然我理解了两天..... 首先先来了解异或方程组(或者说mod2方程组,modk的话貌似可以这样拓展出来) 对于一些我们需要求出的变量a[1~n],我们现在知道n个方程组(有解的情况下),每个方程均是类似原版消元那样带了个系数的,只不过这个系数只有0和1,那么我们第i个方程用x[i, 1~n]表示a[1~n]的系数,然后x[n+1]为这个方程的右式 那么这些方程组是这样的 (x[1,1]*a[1])^(x[1,2]*a[2])^..

POJ 1222 EXTENDED LIGHTS OUT(高斯消元解XOR方程组)

http://poj.org/problem?id=1222 题意:现在有5*6的开关,1表示亮,0表示灭,按下一个开关后,它上下左右的灯泡会改变亮灭状态,要怎么按使得灯泡全部处于灭状态,输出方案,1表示按,0表示不按. 思路:每个开关最多只按一次,因为按了2次之后,就会抵消了. 可以从结果出发,也就是全灭状态怎么按能变成初始状态. 用3*3来举个例子,$X\left ( i,j \right )$表示这些开关是按还是不按,那么对于第一个开关,对它有影响的就只有2.4这两个开关,所以它的异或方程

POJ 1222 EXTENDED LIGHTS OUT(高斯消元)

[题目链接] http://poj.org/problem?id=1222 [题目大意] 给出一个6*5的矩阵,由0和1构成,要求将其全部变成0,每个格子和周围的四个格子联动,就是说,如果一个格子变了数字,周围四格都会发生变化,变化即做一次与1的异或运算,输出每个格子的操作次数. [题解] 高斯消元练手题,对于每个格子的最终情况列一个方程,一共三十个方程三十个未知数,用高斯消元求解即可. [代码] #include <cstdio> #include <algorithm> #in

BZOJ 1770 [Usaco2009 Nov]lights 燈 【高斯消元】

Description 貝希和她的閨密們在她們的牛棚中玩遊戲.但是天不從人願,突然,牛棚的電源跳閘了,所有的燈都被關閉了.貝希是一個很膽小的女生,在伸手不見拇指的無盡的黑暗中,她感到驚恐,痛苦與絕望.她希望您能夠幫幫她,把所有的燈都給重新開起來!她才能繼續快樂地跟她的閨密們繼續玩遊戲! 牛棚中一共有N(1 <= N <= 35)盞燈,編號為1到N.這些燈被置於一個非常複雜的網絡之中.有M(1 <= M <= 595)條很神奇的無向邊,每條邊連接兩盞燈. 每盞燈上面都帶有一個開關.當

POJ 1222 EXTENDED LIGHTS OUT 高斯消元

点击打开链接 EXTENDED LIGHTS OUT Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 6492   Accepted: 4267 Description In an extended version of the game Lights Out, is a puzzle with 5 rows of 6 buttons each (the actual puzzle has 5 rows of 5 butt

UVA 1560 - Extended Lights Out(高斯消元)

UVA 1560 - Extended Lights Out 题目链接 题意:给定一个矩阵,1代表开着灯,0代表关灯,没按一个开关,周围4个位置都会变化,问一个按的方法使得所有灯都变暗 思路:两种做法: 1.枚举递推 这个比较简单,就枚举第一行,然后递推过去,每次如果上一行是亮灯,则下一行开关必须按下去 2.高斯消元, 这个做法比较屌一些,每个位置对应上下左右中5个位置可以列出一个异或表达式,然后30个位置对应30个异或表达式,利用高斯消元法就能求出每个位置的解了 代码: 高斯消元法: #inc

POJ EXTENDED LIGHTS OUT 1222【高斯消元】

Language: Default EXTENDED LIGHTS OUT Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 7672   Accepted: 4996 Description In an extended version of the game Lights Out, is a puzzle with 5 rows of 6 buttons each (the actual puzzle has 5 row

【高斯消元】Poj 1222:EXTENDED LIGHTS OUT

Description In an extended version of the game Lights Out, is a puzzle with 5 rows of 6 buttons each (the actual puzzle has 5 rows of 5 buttons each). Each button has a light. When a button is pressed, that button and each of its (up to four) neighbo