Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks论文理解

一、创新点和解决的问题

创新点

设计Region Proposal Networks【RPN】,利用CNN卷积操作后的特征图生成region proposals,代替了Selective Search、EdgeBoxes等方法,速度上提升明显;

训练Region Proposal Networks与检测网络【Fast R-CNN】共享卷积层,大幅提高网络的检测速度。

解决的问题

继Fast R-CNN后,在CPU上实现的区域建议算法Selective Search【2s/image】、EdgeBoxes【0.2s/image】等成了物体检测速度提升上的最大瓶颈。

二、整体框架

我们先整体的介绍下上图中各层主要的功能:

1)、Conv layers提取特征图:

作为一种CNN网络目标检测方法,Faster RCNN首先使用一组基础的conv+relu+pooling层提取input image的feature maps,该feature maps会用于后续的RPN层和全连接层

2)、RPN(Region Proposal Networks):

RPN网络主要用于生成region proposals,首先生成一堆Anchor box,对其进行裁剪过滤后通过softmax判断anchors属于前景(foreground)或者后景(background),即是物体or不是物体,所以这是一个二分类;同时,另一分支bounding box regression修正anchor box,形成较精确的proposal(注:这里的较精确是相对于后面全连接层的再一次box regression而言)

3)、Roi Pooling:

该层利用RPN生成的proposals和VGG16最后一层得到的feature map,得到固定大小的proposal feature map,进入到后面可利用全连接操作来进行目标识别和定位

4)、Classifier:

会将Roi Pooling层形成固定大小的feature map进行全连接操作,利用Softmax进行具体类别的分类,同时,利用L1 Loss完成bounding box regression回归操作获得物体的精确位置.

 

三、网络结构

现在,通过上图开始逐层分析

1)Conv layers

Faster RCNN首先是支持输入任意大小的图片的,比如上图中输入的P*Q,进入网络之前对图片进行了规整化尺度的设定,如可设定图像短边不超过600,图像长边不超过1000,我们可以假定M*N=1000*600(如果图片少于该尺寸,可以边缘补0,即图像会有黑色边缘)

①   13个conv层:kernel_size=3,pad=1,stride=1;

卷积公式:

所以,conv层不会改变图片大小(即:输入的图片大小=输出的图片大小)

②   13个relu层:激活函数,不改变图片大小

③   4个pooling层:kernel_size=2,stride=2;pooling层会让输出图片是输入图片的1/2

经过Conv layers,图片大小变成(M/16)*(N/16),即:60*40(1000/16≈60,600/16≈40);则,Feature Map就是60*40*512-d(注:VGG16是512-d,ZF是256-d),表示特征图的大小为60*40,数量为512

2)RPN(Region Proposal Networks):

为了进一步更清楚的看懂RPN的工作原理,将Caffe版本下的网络图贴出来,对照网络图进行讲解会更清楚

(2.1) rpn_cls、 rpn_bbox

Feature Map进入RPN后,先经过一次3*3的卷积,同样,特征图大小依然是60*40,数量512,这样做的目的应该是进一步集中特征信息,接着看到两个全卷积,即kernel_size=1*1,p=0,stride=1;

如上图中标识:

①   rpn_cls:60*40*512-d ⊕  1*1*512*18 ==> 60*40*9*2

逐像素对其9个Anchor box进行二分类

②   rpn_bbox:60*40*512-d ⊕  1*1*512*36==>60*40*9*4

逐像素得到其9个Anchor box四个坐标信息(其实是偏移量,后面介绍)

如下图所示:

 (2.2)、Anchors的生成规则

前面提到经过Conv layers后,图片大小变成了原来的1/16,令feat_stride=16,在生成Anchors时,我们先定义一个base_anchor,大小为16*16的box(因为特征图(60*40)上的一个点,可以对应到原图(1000*600)上一个16*16大小的区域),源码中转化为[0,0,15,15]的数组,参数ratios=[0.5, 1, 2]scales=[8, 16, 32]

先看[0,0,15,15],面积保持不变,长、宽比分别为[0.5, 1, 2]是产生的Anchors box

如果经过scales变化,即长、宽分别均为 (16*8=128)、(16*16=256)、(16*32=512),对应anchor box如图

综合以上两种变换,最后生成9个Anchor box

特征图大小为60*40,所以会一共生成60*40*9=21600个Anchor box

源码中,通过width:(0~60)*16,height(0~40)*16建立shift偏移量数组,再和base_ancho基准坐标数组累加,得到特征图上所有像素对应的Anchors的坐标值,是一个[216000,4]的数组

(2.3)rpn-data

这一层主要是为特征图60*40上的每个像素生成9个Anchor box,并且对生成的Anchor box进行过滤和标记,参照源码,过滤和标记规则如下:

①    去除掉超过1000*600这原图的边界的anchor box

②    如果anchor box与ground truth的IoU值最大,标记为正样本,label=1

③    如果anchor box与ground truth的IoU>0.7,标记为正样本,label=1

④    如果anchor box与ground truth的IoU<0.3,标记为负样本,label=0

剩下的既不是正样本也不是负样本,不用于最终训练,label=-1

除了对anchor box进行标记外,另一件事情就是计算anchor box与ground truth之间的偏移量

令:ground truth:标定的框也对应一个中心点位置坐标x*,y*和宽高w*,h*

anchor box: 中心点位置坐标x_a,y_a和宽高w_a,h_a

所以,偏移量:

△x=(x*-x_a)/w_a   △y=(y*-y_a)/h_a

△w=log(w*/w_a)   △h=log(h*/h_a)

通过ground truth box与预测的anchor box之间的差异来进行学习,从而是RPN网络中的权重能够学习到预测box的能力

(2.4)rpn_loss_cls、rpn_loss_bbox、rpn_cls_prob

‘rpn_loss_cls’、‘rpn_loss_bbox’是分别对应softmax,smooth L1计算损失函数,‘rpn_cls_prob’计算概率值(可用于下一层的nms非最大值抑制操作)

(2.5)proposal

源码中,会重新生成60*40*9个anchor box,然后累加上训练好的△x, △y, △w, △h,从而得到了相较于之前更加准确的预测框region proposal,进一步对预测框进行越界剔除和使用nms非最大值抑制,剔除掉重叠的框;比如,设定IoU为0.7的阈值,即仅保留覆盖率不超过0.7的局部最大分数的box(粗筛)。最后留下大约2000个anchor,然后再取前N个box(比如300个);这样,进入到下一层ROI Pooling时region proposal大约只有300个

(2.6)roi_data

为了避免定义上的误解,我们将经过‘proposal’后的预测框称为region proposal(其实,RPN层的任务其实已经完成,roi_data属于为下一层准备数据)

主要作用:

①       RPN层只是来确定region proposal是否是物体(是/否),这里根据region proposal和ground truth box的最大重叠指定具体的标签(就不再是二分类问题了,参数中指定的是81类)

②       计算region proposal与ground truth boxes的偏移量,计算方法和之前的偏移量计算公式相同

经过这一步后的数据输入到ROI Pooling层进行进一步的分类和定位.

剩下的就是Fast R-CNN了。

参考:

https://www.cnblogs.com/wangyong/p/8513563.html

https://blog.csdn.net/WoPawn/article/details/52223282

原文地址:https://www.cnblogs.com/CJT-blog/p/10422158.html

时间: 2024-08-09 12:04:36

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks论文理解的相关文章

【论文笔记】Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

写在前面: 我看的paper大多为Computer Vision.Deep Learning相关的paper,现在基本也处于入门阶段,一些理解可能不太正确.说到底,小女子才疏学浅,如果有错误及理解不透彻的地方,欢迎各位大神批评指正! E-mail:[email protected]. ------------------------------------------------ <Faster R-CNN: Towards Real-Time Object Detection with Reg

(转)Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks(更快的RCNN:通过区域提议网络实现实时)

原文出处 感谢作者~ Faster R-CNN: Towards Real-Time Object Detection with Region ProposalNetworks Shaoqing Ren, Kaiming He, Ross Girshick, Jian Sun 摘要 目前最先进的目标检测网络需要先用区域建议算法推测目标位置,像SPPnet[7]和Fast R-CNN[5]这些网络已经减少了检测网络的运行时间,这时计算区域建议就成了瓶颈问题.本文中,我们介绍一种区域建议网络(Reg

论文笔记:Faster R-CNN:Towards Real-Time Object Detection with Region Proposal Networks

文章: http://arxiv.org/abs/1506.01497 源码:坐等.... 目录: Region Proposal Networks Translation-Invariant Anchors A Loss Function for Learning Region Proposals Optimization Sharing Convolutional Features for Region Proposal and Object Detection Implementation

论文阅读--Scalable Object Detection using Deep Neural Networks

Scalable Object Detection using Deep Neural Networks 作者: Dumitru Erhan, Christian Szegedy, Alexander Toshev, and Dragomir Anguelov 引用: Erhan, Dumitru, et al. "Scalable object detection using deep neural networks." Proceedings of the IEEE Confere

中文版 R-FCN: Object Detection via Region-based Fully Convolutional Networks

R-FCN: Object Detection via Region-based Fully Convolutional Networks 摘要 我们提出了基于区域的全卷积网络,以实现准确和高效的目标检测.与先前的基于区域的检测器(如Fast/Faster R-CNN [6,18])相比,这些检测器应用昂贵的每个区域子网络数百次,我们的基于区域的检测器是全卷积的,几乎所有计算都在整张图像上共享.为了实现这一目标,我们提出了位置敏感分数图,以解决图像分类中的平移不变性与目标检测中的平移变化之间的困

【CV论文阅读】+【搬运工】LocNet: Improving Localization Accuracy for Object Detection + A Theoretical analysis of feature pooling in Visual Recognition

论文的关注点在于如何提高bounding box的定位,使用的是概率的预测形式,模型的基础是region proposal.论文提出一个locNet的深度网络,不在依赖于回归方程.论文中提到locnet可以很容易与现有的detection系统结合,但我困惑的是(1)它们的训练的方法,这点论文中没有明确的提到,而仅仅说用迭代的方法进行(2)到底两者的融合后两个网络的结构是怎样呢?可以看做一个多任务的系统,还是存在两个网络呢? 检测方法 输入的候选bounding box(使用selective s

第三十一节,使用谷歌Object Detection API进行目标检测

Object Detection API是谷歌开放的一个内部使用的物体识别系统.2016年 10月,该系统在COCO识别挑战中名列第一.它支持当前最佳的实物检测模型,能够在单个图像中定位和识别多个对象.该系统不仅用于谷歌于自身的产品和服务,还被推广至整个研究社区. 一.代码位置与内置的模型 1.Object Detection Object Detection模块的位置与slim的位置相近,同在github.com 中TensorFlow 的models\research目录下.类似slim,

深度学习(七)object detection

目标检测(object detection)的基本思路: 检测(detection)+ 定位(localization) 目标检测在很多场景有用,如无人驾驶和安防系统. 传统方法 特征提取算法(如:haar特征,HOG特征)+分类器(如:svm) 深度学习方法 R-CNN (Regions with CNN features) 基于卷积神经网络特征的区域方法 Selective Search to Extract Regions + CNN提取特征 + SVM分类 主要步骤: (1) 输入测试图

【Network Architecture】Feature Pyramid Networks for Object Detection(FPN)论文解析(转)

目录 0. 前言 1. 博客一 2.. 博客二 0. 前言 ??这篇论文提出了一种新的特征融合方式来解决多尺度问题, 感觉挺有创新性的, 如果需要与其他网络进行拼接,还是需要再回到原文看一下细节.这里转了两篇比较好的博客作为备忘. 1. 博客一 这篇论文是CVPR2017年的文章,采用特征金字塔做目标检测,有许多亮点,特来分享. 论文:feature pyramid networks for object detection 论文链接:https://arxiv.org/abs/1612.031