0.经典快排:将数组最后位置的数值x作为划分值,将小于等于x的放在左边,大于x的放在右边,
让小于等于x区域的最后一个位置上放x值,如果有多个值等于x,中间区域放的什么值无所谓,左边区域最后一个数放x就可以,左边区域放小于等于x的值,右边放大于x的值,经典快排的时间复杂度和数据状况是有关系的。最好的时间复杂度是O(NlogN),最差情况的时间复杂度是O(N^2)
1.可以用荷兰国旗问题来改进快速排序
(1)将小于x的放在左边,等于x的放中间,大于x的放在右边,这样的话等于x的区域就不用动了,将小于x的区域和大于x的区域继续这样的过程进行递归操作,最终让其整体有序。将原始区域清晰一些,每次搞定一个位置上的数,只搞定一个位置上的数。下次进行递归的时候是另外的两个区域。
2.时间复杂度O(N*logN),额外空间复杂度O(logN),数据变化到一定状况的时候,时间复杂度会变成O(N^2)的算法。
3.随机快排。在整个数组中,每次不是把最后一个数拿来划分,随机选一个数和最后位置上的数进行交换,然后拿随机的数来进行划分。 这种情况下的时间复杂度只能用长期期望的方式来进行计算,长期期望的时间复杂度是O(NlogN)。随机快排是最常用的排序。使用断点长期的空间复杂度时候O(logN)。大样本的情况下,长期期望是O(NlogN),空间复杂度是O(logN)。
4.代码:
import java.util.Arrays; public class QuickSort { public static void quickSort(int[] arr) { if (arr == null || arr.length < 2) { return; } quickSort(arr, 0, arr.length - 1); } public static void quickSort(int[] arr, int l, int r) { if (l < r) { swap(arr, l + (int) (Math.random() * (r - l + 1)), r); int[] p = partition(arr, l, r); quickSort(arr, l, p[0] - 1); quickSort(arr, p[1] + 1, r); } } public static int[] partition(int[] arr, int l, int r) { int less = l - 1; int more = r; while (l < more) { if (arr[l] < arr[r]) { swap(arr, ++less, l++); } else if (arr[l] > arr[r]) { swap(arr, --more, l); } else { l++; } } swap(arr, more, r); return new int[] { less + 1, more }; } public static void swap(int[] arr, int i, int j) { int tmp = arr[i]; arr[i] = arr[j]; arr[j] = tmp; } // for test public static void comparator(int[] arr) { Arrays.sort(arr); } // for test public static int[] generateRandomArray(int maxSize, int maxValue) { int[] arr = new int[(int) ((maxSize + 1) * Math.random())]; for (int i = 0; i < arr.length; i++) { arr[i] = (int) ((maxValue + 1) * Math.random()) - (int) (maxValue * Math.random()); } return arr; } // for test public static int[] copyArray(int[] arr) { if (arr == null) { return null; } int[] res = new int[arr.length]; for (int i = 0; i < arr.length; i++) { res[i] = arr[i]; } return res; } // for test public static boolean isEqual(int[] arr1, int[] arr2) { if ((arr1 == null && arr2 != null) || (arr1 != null && arr2 == null)) { return false; } if (arr1 == null && arr2 == null) { return true; } if (arr1.length != arr2.length) { return false; } for (int i = 0; i < arr1.length; i++) { if (arr1[i] != arr2[i]) { return false; } } return true; } // for test public static void printArray(int[] arr) { if (arr == null) { return; } for (int i = 0; i < arr.length; i++) { System.out.print(arr[i] + " "); } System.out.println(); } // for test public static void main(String[] args) { int testTime = 500000; int maxSize = 100; int maxValue = 100; boolean succeed = true; for (int i = 0; i < testTime; i++) { int[] arr1 = generateRandomArray(maxSize, maxValue); int[] arr2 = copyArray(arr1); quickSort(arr1); comparator(arr2); if (!isEqual(arr1, arr2)) { succeed = false; printArray(arr1); printArray(arr2); break; } } System.out.println(succeed ? "Nice!" : "Fucking fucked!"); int[] arr = generateRandomArray(maxSize, maxValue); printArray(arr); quickSort(arr); printArray(arr); } }
原文地址:https://www.cnblogs.com/bigdata-stone/p/10474489.html
时间: 2024-11-08 11:05:32