Fisher判别推导 Logistic回归推导 SVM推导

1. Fisher判别分析

2 Logistic 推导(二分类)

3 支持向量机推导(硬间隔)

原文地址:https://www.cnblogs.com/zfc888/p/10274434.html

时间: 2024-10-12 01:47:34

Fisher判别推导 Logistic回归推导 SVM推导的相关文章

基于sklearn进行线性回归、logistic回归、svm等的简单操作总结

基于sklearn的一些AI算法基本操作 sklearn中的一些相关的库 分别导入这些相关算法的库 import pandas as pd #导入一个用于读取csv数据的容器 from sklearn.model_selection import train_test_split #用于数据集划分的模块 from sklearn.model_selection import GridSearchCV #用于交叉验证的模块 from sklearn.neighbors import KNeighb

机器学习(4)之Logistic回归

机器学习(4)之Logistic回归 1. 算法推导 与之前学过的梯度下降等不同,Logistic回归是一类分类问题,而前者是回归问题.回归问题中,尝试预测的变量y是连续的变量,而在分类问题中,y是一组离散的,比如y只能取{0,1}. 假设一组样本为这样如图所示,如果需要用线性回归来拟合这些样本,匹配效果会很不好.对于这种y值只有{0,1}这种情况的,可以使用分类方法进行. 假设,且使得 其中定义Logistic函数(又名sigmoid函数): 下图是Logistic函数g(z)的分布曲线,当z

Logistic回归Cost函数和J(θ)的推导----Andrew Ng【machine learning】公开课

最近翻Peter Harrington的<机器学习实战>,看到Logistic回归那一章有点小的疑问. 作者在简单介绍Logistic回归的原理后,立即给出了梯度上升算法的code:从算法到代码跳跃的幅度有点大,作者本人也说了,这里略去了一个简单的数学推导. 那么其实这个过程在Andrew Ng的机器学习公开课里也有讲到.现在回忆起来,大二看Andrew的视频的时候心里是有这么一个疙瘩(Andrew也是跳过了一步推导) 那么这里就来讲一下作者略去了怎样的数学推导,以及,怎么推导. 在此之前,先

Logistic Regression 原理及推导 python实现

一.问题引入 首先,Logistic回归是一种广义的线性回归模型,主要用于解决二分类问题.比如,现在我们有N个样本点,每个样本点有两维特征x1和x2,在直角坐标系中画出这N个样本的散点图如下图所示, 蓝色和红色分别代表两类样本.现在我们的目标是,根据这N个样本所表现出的特征以及他们各自对应的标签,拟合出一条直线对两类样本进行分类,直线的上侧属于第一类,直线的下侧属于第二类.那么我们如何寻找这条直线呢?我们知道,一条直线可以用简单的公式表示 y=θ0+θ1x1+θ2x2+...=θTx 参数θT的

(一)Python入门-4控制语句:10推导式创建序列-列表推导式-字典推导式-集合推导式-生成器推导式

推导式创建序列: 推导式是从一个或者多个迭代器快速创建序列的一种方法.它可以将循环和条件判断结合, 从而避免冗长的代码.推导式是典型的Python 风格,会使用它代表你已经超过Python初 学者的水平. 一:列表推导式 列表推导式生成列表对象,语法如下: [表达式 for item in 可迭代对象 ] 或者:{表达式 for item in 可迭代对象 if 条件判断} 1 #列表推导式 2 x = [x for x in range(1,5)] 3 print(x) 4 5 x = [x*

机器学习经典算法详解及Python实现---Logistic回归(LR)分类器

(一)认识Logistic回归(LR)分类器 首先,Logistic回归虽然名字里带"回归",但是它实际上是一种分类方法,主要用于两分类问题,利用Logistic函数(或称为Sigmoid函数),自变量取值范围为(-INF, INF),自变量的取值范围为(0,1),函数形式为: 由于sigmoid函数的定义域是(-INF, +INF),而值域为(0, 1).因此最基本的LR分类器适合于对两分类(类0,类1)目标进行分类.Sigmoid 函数是个很漂亮的"S"形,如下

机器学习之线性回归以及Logistic回归

1.线性回归 回归的目的是预测数值型数据的目标值.目标值的计算是通过一个线性方程得到的,这个方程称为回归方程,各未知量(特征)前的系数为回归系数,求这些系数的过程就是回归. 对于普通线性回归使用的损失函数一般为平方误差.把其用最小二乘法进行优化得到的关于系数w求导所得到的矩阵形式的表达式求得的w便为最优解了. 线性回归可以参考:https://www.cnblogs.com/pinard/p/6004041.html 2.Logistic回归 逻辑回归假设数据服从伯努利分布,以最大化条件概率为学

2.2 logistic回归损失函数(非常重要,深入理解)

上一节当中,为了能够训练logistic回归模型的参数w和b,需要定义一个成本函数 使用logistic回归训练的成本函数 为了让模型通过学习来调整参数,要给出一个含有m和训练样本的训练集 很自然的,希望通过训练集找到参数w和b,来得到自己得输出 对训练集当中的值进行预测,将他写成y^(I)我们希望他会接近于训练集当中的y^(i)的数值 现在来看一下损失函数或者叫做误差函数 他们可以用来衡量算法的运行情况 可以定义损失函数为y^和y的差,或者他们差的平方的一半,结果表明你可能这样做,但是实际当中

Logistic回归

Logistic回归 主要思想: 根据训练集找到一个适合的预测函数(线性函数),一般用h表示,该函数就是我们需要找的分类函数,用它来预测输入数据的分类. 构造一个Cost(损失函数),该函数为每个输入数据的预测类别(h)与真实数据的类别(y)之间的偏差,可以以二者间的差值,即(h-y)或其他形式来计算偏差.由于需要综合考虑所有训练数据的损失,需要将数据的损失求和或求平均,表示所有训练数据预测出的类别与实际类别的偏差,将Cost求和或者求平均,记为J(θ),表示所有训练数据预测值与实际值得偏差.