poj - 1185 炮兵阵地 状压DP 解题报告

炮兵阵地

Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 21553   Accepted: 8363

Description

司令部的将军们打算在N*M的网格地图上部署他们的炮兵部队。一个N*M的地图由N行M列组成,地图的每一格可能是山地(用"H" 表示)。也可能是平原(用"P"表示),例如以下图。在每一格平原地形上最多可以布置一支炮兵部队(山地上不可以部署炮兵部队)。一支炮兵部队在地图上的攻击范围如图中黑色区域所看到的:

假设在地图中的灰色所标识的平原上部署一支炮兵部队,则图中的黑色的网格表示它可以攻击到的区域:沿横向左右各两格,沿纵向上下各两格。图上其他白色网格均攻击不到。从图上可见炮兵的攻击范围不受地形的影响。

如今,将军们规划怎样部署炮兵部队,在防止误伤的前提下(保证不论什么两支炮兵部队之间不能互相攻击。即不论什么一支炮兵部队都不在其它支炮兵部队的攻击范围内),在整个地图区域内最多可以摆放多少我军的炮兵部队。

Input

第一行包括两个由空格切割开的正整数。分别表示N和M;

接下来的N行,每一行含有连续的M个字符(‘P‘或者‘H‘),中间没有空格。

按顺序表示地图中每一行的数据。N <= 100;M <= 10。

Output

仅一行。包括一个整数K,表示最多能摆放的炮兵部队的数量。

Sample Input

5 4
PHPP
PPHH
PPPP
PHPP
PHHP

Sample Output

6

题解:

假设用 dp[i]表示前i行所能放的最多炮兵数目, 是否能形成递推关系? 显然不能。由于不满足无后效性。

依照加限制条件加维度的思想,加个限制条件:dp[i][j]表示第i行的炮兵布局为j的前提下,前i行所能放的最多炮兵数目布局为j体现了状态压缩。j是个10位二进制数,表示一行炮兵的一种布局。有炮兵的位置。相应位为1。没有炮兵的位置,相应位为0。

依旧不满足无后效性。因仅从 dp[i-1][k] (k = 0…1024) 无法推出dp[i][j]。达成 dp[i-1][k]可能有多种方案,有的方案同意第i行布局为j,有的方案不同意第i行布局为j,然而却没有信息能够用来进行分辨。

再加限制条件,再加一维:dp[i][j][k]表示第i行布局为j,第i-1行布局为k时,前i行的最多炮兵数目。

1)j,k这两种布局必须相容。否则 dp[i][j][k] = 0

2) dp[i][j][k] = max{dp[i-1][k][m], m = 0...1023} + Num(j), Num(j)为布局j中炮兵的数目, j和m必须相容, k和m必须相容。此时满足无后效性。

3) 初始条件:dp[0][j][0] = Num(j)dp[1][i][j] = max{dp[0][j][0]} + Num(i)

问题:dp数组为:int dp[100][1024][1024], 太大,时间复杂度和空间复杂度都太高。

解决:每一行里最多能放4个炮兵。就算全是平地,能放炮兵的方案数目也不超过60(用一遍dfs能够所有求出)算出一行在全平地情况下所有炮兵的排列方案,存入数组 state[70]int dp[100][70][70] 足矣。

dp[i][j][k]表示第i行布局为state[j],第i-1行布局为state[k]时,前i行的最多炮兵数目。

參考代码:

#include <cstdio>
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 105;
int Map[N];
int dp[N][65][65];
int s[N], num[N];
int n, m, p;

bool check(int x) {
    if(x & (x >> 1)) return false;
    if(x & (x >> 2)) return false;
    return true;
}

int Count(int x) {
    int i = 1, ans = 0;
    while(i <= x) {
        if(x & i) ans++;
        i <<= 1;
    }
    return ans;
}

void Init() {
    p = 0;
    memset(s, 0, sizeof(s));
    memset(num, 0, sizeof(num));
    for(int i = 0; i < (1 << m); i++) {
        if(check(i)) {
            s[p] = i;
            num[p++] = Count(i);
        }
    }
}

int main() {
    char ch;
    int T;
        scanf("%d%d", &n, &m);
        if(!n && !m) {
            printf("0\n");
        }
       else{
        memset(dp, 0, sizeof(dp));
        memset(Map, 0, sizeof(Map));
        for(int i = 0; i < n; i++) {
            for(int j = 0; j < m; j++) {
                cin >> ch;
                if(ch == ‘H‘)
                    Map[i] = Map[i] | (1 << (m - 1 - j));  //P为0,H为1
            }
        }
        Init();
//        printf("p = %d\n", p);
//        for(int i = 0; i < p; i++) {
//            printf("s[%d] = %d, num[%d] = %d\n", i, s[i], i, num[i]);
//        }
        for(int i = 0; i < p; i++) {
            if(!(Map[0] & s[i]))
                dp[0][i][0] = num[i];
        }
        for(int i = 0; i < p; i++) {
            if(!(Map[1] & s[i])) {
                for(int j = 0; j < p; j++) {
                    if((!(s[i] & s[j]))) {
                        dp[1][i][j] = max(dp[1][i][j], dp[0][j][0] + num[i]);
                    }
                }
            }
        }
        for(int r = 2; r < n; r++) {
            for(int i = 0; i < p; i++) {
                if(!(s[i] & Map[r])) {
                    for(int j = 0; j < p; j++) {
                        if(!(s[j] & Map[r-1])) {
                            if(!(s[i] & s[j])) {
                                for(int k = 0; k < p; k++) {
                                    if(!(s[k] & Map[r-2])) {
                                        if(!(s[j] & s[k])) {
                                            if(!(s[i] & s[k])) {
                                                dp[r][i][j] = max(dp[r][i][j], dp[r-1][j][k] + num[i]);
                                            }
                                        }
                                    }
                                }
                            }
                        }
                    }
                }
            }
        }
        int ans = 0;
        for(int i = 0; i < p; i++) {
            for(int j = 0; j < p; j++) {
                if(ans < dp[n-1][i][j])
                    ans = dp[n-1][i][j];
            }
        }
        printf("%d\n", ans);
    }
    return 0;
}
时间: 2024-12-26 12:56:55

poj - 1185 炮兵阵地 状压DP 解题报告的相关文章

POJ 1185 炮兵阵地 状压dp

http://poj.org/problem?id=1185 经典题目不必多说,直接贴代码. 1 #include<cstdio> 2 #include<cstring> 3 #include<algorithm> 4 using namespace std; 5 6 int n, m, cnt, size; 7 int a[110], st[70], ct[70]; 8 char str[15]; 9 int f[110][70][70]; 10 void init(

POJ 1185 炮兵阵地 状压DP+离散化优化

一开始能想到的状态就只有位压两行和当前行的行号,这样无论是空间和时间都是无法接受的. 但是因为炮兵的攻击范围比较大,而且又有地形限制,每一行的状态其实不多了,打表看了一下不超过80种,离散化一下就可以随意DP了. 据说题目也可以抽象成二分图最大匹配来搞?感觉复杂度有点高 #include <cstdio> #include <cstring> #include <iostream> #include <map> #include <set> #i

POJ 1185 炮兵阵地 (状压dp 经典中的经典)

炮兵阵地 Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 21381   Accepted: 8290 Description 司令部的将军们打算在N*M的网格地图上部署他们的炮兵部队.一个N*M的地图由N行M列组成,地图的每一格可能是山地(用"H" 表示),也可能是平原(用"P"表示),如下图.在每一格平原地形上最多可以布置一支炮兵部队(山地上不能够部署炮兵部队):一支炮兵部队在地图上的攻击

POJ 1185炮兵阵地 (状压DP)

题目链接 POJ 1185 今天艾教留了一大堆线段树,表示做不动了,就补补前面的题.QAQ 这个题,我第一次写还是像前面HDU 2167那样写,发现这次影响第 i 行的还用i-2行那样,那以前的方法就行不通了. 找出所有可行的状态,因为每一行最大只有10列,所以一行里最多有4个,那它可行的状态不多(网上大多数说法最多是60个).用dp[x][i][j]来转移,x表示第x行,i表示第x行的状态,j表示第x-1行的状态.先初始化前两行. 1 #include <cstdio> 2 #include

[poj 1185] 炮兵阵地 状压dp 位运算

Description 司令部的将军们打算在N*M的网格地图上部署他们的炮兵部队.一个N*M的地图由N行M列组成,地图的每一格可能是山地(用"H" 表示),也可能是平原(用"P"表示),如下图.在每一格平原地形上最多可以布置一支炮兵部队 (山地上不能够部署炮兵部队):一支炮兵部队在地图上的攻击范围如图中黑色区域所示: 如果在地图中的灰色所标识的平原上部署一支炮兵部队,则图中的黑色的网格表示它能够攻击到的区域:沿横向左右各两格,沿纵向上下各两格.图上其它白色网格均攻击

POJ 1185 炮兵布阵 状压DP

链接:http://poj.org/problem?id=1185 题意:一个地图上有两种地形,H和P,P上可以放一个炮,攻击范围是上下左右各两格,问的是最多可以再地图上放多少个炮.行N <= 100,列M <= 10. 思路:因为上下左右各两格内不能放置炮,所以每一行的状态数从2^10减少到60种.状态转移方程为:dp[i][j][k]=max(dp[i-1][k][l]+bb[j]).dp[i][j][k]表示在第i行状态为j,在第i-1行状态为k的前i行一共放置的炮塔数.bb[j]表示状

poj1185炮兵阵地状压dp

压前两行的状态很容易想到,但是 直接搞  (1<<10) * (1<<10)  空间时间都明显受不了, 但是经过高人指点,你会发现:枚举每一行可行的状态,其实并不多,预先打表处理,不用 1->(1<<10)枚举每一种状态.. 然后记忆化搜就ok了. #include <cstdio> #include <cstring> #include <cmath> #include <algorithm> #include &

TOJ 4912 炮兵阵地(状压dp)

描述 司令部的将军们打算在N*M的网格地图上部署他们的炮兵部队.一个N*M的地图由N行M列组成,地图的每一格可能是山地(用"H" 表示),也可能是平原(用"P"表示),如下图.在每一格平原地形上最多可以布置一支炮兵部队(山地上不能够部署炮兵部队):一支炮兵部队在地图上的攻击范围如图中黑色区域所示: 如果在地图中的灰色所标识的平原上部署一支炮兵部队,则图中的黑色的网格表示它能够攻击到的区域:沿横向左右各两格,沿纵向上下各两格.图上其它白色网格均攻击不到.从图上可见炮兵

POJ 1185 NOI 2001 炮兵阵地 状压DP

题目大意:给出一个地图,有两种点,P点可以站人,H点不能站人.每放一个人就会对他上下左右各两个格子产生影响,产生影响的格子不能放人.问最多能放多少个人. 思路:数据范围指引解题的方向.题中给出M<=10,这是一个很小的数字,2^10也不过才1024,用这个来dp就轻松多了.于是我们先预处理出每一行可能出现的状态,要注意一行中不能有两个距离<2.大表之后发现,每一行最多只能有60个左右.现在可以放心做O(n^3×m)的dp了.处理上下几行的关系的时候要注意status&status_==