图像处理之基础---卷积模板运算

1.使用模板处理图像相关概念:

模板:矩阵方块,其数学含义是一种卷积运算。
      卷积运算:可看作是加权求和的过程,使用到的图像区域中的每个像素分别于卷积核(权矩阵)的每个元素对应相
                乘,所有乘积之和作为区域中心像素的新值。
      卷积核:卷积时使用到的权用一个矩阵表示,该矩阵与使用的图像区域大小相同,其行、列都是奇数,
              是一个权矩阵。
      卷积示例:
              3 * 3 的像素区域R与卷积核G的卷积运算:
              R5(中心像素)=R1G1 + R2G2 + R3G3 + R4G4 + R5G5 + R6G6 + R7G7 + R8G8 + R9G9
            

2.使用模板处理图像的问题:
       边界问题:当处理图像边界像素时,卷积核与图像使用区域不能匹配,卷积核的中心与边界像素点对应,
                 卷积运算将出现问题。
       处理办法:
              A. 忽略边界像素,即处理后的图像将丢掉这些像素。
              B. 保留原边界像素,即copy边界像素到处理后的图像。

3.常用模板:


http://www.360doc.com/content/11/0530/20/4539198_120561433.shtml

http://blog.csdn.net/frankyzhangc/article/details/6990782

http://blog.sina.com.cn/s/blog_63af6d980100t6ut.html

http://www.360doc.com/content/11/0618/18/35748_127855587.shtml

http://blog.sina.com.cn/s/blog_4bdb170b01019asi.html

http://blog.sina.com.cn/s/blog_4bdb170b01019atv.html

http://blog.sina.com.cn/s/blog_4bdb170b0101bsd5.html 小波

图像处理之基础---卷积模板运算

时间: 2024-12-26 14:02:16

图像处理之基础---卷积模板运算的相关文章

图像处理之基础---卷积模板简介

1.使用模板处理图像相关概念:       模板:矩阵方块,其数学含义是一种卷积运算. 卷积运算:可看作是加权求和的过程,使用到的图像区域中的每个像素分别与卷积核(权矩阵)的每个元素对应相乘,所有乘积之和作为区域中心像素的新值. 卷积核:卷积时使用到的权,用一个矩阵表示,该矩阵与使用的图像区域大小相同,其行.列都是奇数,是一个权矩阵. 卷积示例: 假设3 * 3的像素区域R与卷积核G分别为: 则卷积运算为: R5(中心像素)=R1G1 + R2G2 + R3G3 + R4G4 + R5G5 +

图像处理之基础---卷积,滤波,平滑

/*今天师弟来问我,CV的书里到处都是卷积,滤波,平滑……这些概念到底是什么意思,有什么区别和联系,瞬间晕菜了,学了这么久CV,卷积,滤波,平滑……这些概念每天都念叨好几遍,可是心里也就只明白个大概的意思,赶紧google之~ 发现自己以前了解的真的很不全面,在此做一些总结,以后对这种基本概念要深刻学习了~*/ 1.图像卷积(模板) (1).使用模板处理图像相关概念: 模板:矩阵方块,其数学含义是一种卷积运算. 卷积运算:可看作是加权求和的过程,使用到的图像区域中的每个像素分别于卷积核(权矩阵)

图像处理之基础---卷积傅立叶变换中的复数

整个看FFT过程中复数一直很折磨我. 原本的实数的东西通过复数表达很像旋转矩阵用quaternion来表达,尽管旋转vector还是要用matrix来做,但是通过用quaternion表达的旋转意义可以做插值等很多快速的操作,而且内存消耗也小,在做完这些操作之后再转成matrix用就好了. 复数表达也是类似. a+bi = M*(cos(theta)+sin(theta)*i)----极坐标 cos(x) + sin(x)*i = exp(x*i)----欧拉公式 这个用欧拉公式转出来的exp(

图像处理之基础---卷积去噪

讨论如何使用卷积作为数学工具来处理图像,实现图像的滤波,其方法包含以下几种,均值 滤波,中值滤波,最大最小值滤波,关于什么是卷积以及理解卷积在图像处理中作用参见这 里–http://blog.csdn.net/jia20003/article/details/7038938 均值滤波: 均值滤波,是图像处理中最常用的手段,从频率域观点来看均值滤波是一种低通滤波器,高 频信号将会去掉,因此可以帮助消除图像尖锐噪声,实现图像平滑,模糊等功能.理想的均 值滤波是用每个像素和它周围像素计算出来的平均值替

图像处理之基础---卷积及其快速算法的C++实现

头文件: /* * Copyright (c) 2008-2011 Zhang Ming (M. Zhang), [email protected] * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation,

图像处理---基础(模板、卷积运算)

转自:图像处理:基础(模板.卷积运算) 1.使用模板处理图像相关概念: 模板:矩阵方块,其数学含义是一种卷积运算.      卷积运算:可看作是加权求和的过程,使用到的图像区域中的每个像素分别于卷积核(权矩阵)的每个元素对应相                乘,所有乘积之和作为区域中心像素的新值.      卷积核:卷积时使用到的权用一个矩阵表示,该矩阵与使用的图像区域大小相同,其行.列都是奇数,              是一个权矩阵.      卷积示例:              3 *

图像处理之基础---二维卷积运算原理剖析

卷积运算(Convolution)是通过两个函数f 和g 生成第三个函数的一种数学算子,表示函数f 与经过翻转和平移与g 的重叠部分的累积.如果将参加卷积的一个函数看作区间的指示函数,卷积还可以被看作是“滑动平均”的推广.假设: f(x),g(x)是R1上的两个可积函数,并且积分是存在的.这样,随着 x 的不同取值,这个积分就定义了一个新函数h(x),称为函数f 与g 的卷积,记为h(x)=(f*g)(x). 两个向量卷积,说白了就是多项式乘法.下面用个矩阵例子说明其工作原理: a和d的卷积就是

图像处理之基础---周末戏说卷积

戏说:卷积 卷积 在图像中其实就是乘积 求和 替代 已达到 平滑或者过滤的效果 参考公式 xiaojiang同学,最近总是和卷积打交道,工作需要,每天都要碰到它好几次,不胜烦恼,因为在大学时候学信号与系统的时候就没学会,我于是心想一定要把卷积完全搞明白.正好同办公室的同学也问我什么是卷积,师姐昨天也告诉我说:“我也早就想把这个问题搞明白了!”经过一段时间的思考之后,有一些很有趣的体会和大家分享. 听说卷积这种运算式物理学家发明的,在实际中用得不亦乐乎,而数学家却一直没有把运算的意义彻底搞明白.仔

Atitit 图像处理之理解卷积attilax总结

Atitit 图像处理之理解卷积attilax总结 卷积的运算可以分为反转.平移,相乘,求和. 在图像处理中,图像是一个大矩阵,卷积模板是一个小矩阵.按照上述过程,就是先把小矩阵反转,然后平移到某一位置,小矩阵的每一个小格对应大矩阵里面的一个小格,然后把对应小格里面的数相乘,把所有对应小格相乘的结果相加求和,得出的最后结果赋值给小矩阵中央小格对应的图像中小格的值,替换原来的值.就是上述说到的,反转.平移.相乘.求和.        一般图像卷积就是从第一个像素(小格)开始遍历到最后一个像素(小格