hdu1978(记忆化搜索)

How many ways

Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2762    Accepted Submission(s):
1630

Problem Description

这是一个简单的生存游戏,你控制一个机器人从一个棋盘的起始点(1,1)走到棋盘的终点(n,m)。游戏的规则描述如下:
1.机器人一开始在棋盘的起始点并有起始点所标有的能量。
2.机器人只能向右或者向下走,并且每走一步消耗一单位能量。
3.机器人不能在原地停留。
4.当机器人选择了一条可行路径后,当他走到这条路径的终点时,他将只有终点所标记的能量。

如上图,机器人一开始在(1,1)点,并拥有4单位能量,蓝色方块表示他所能到达的点,如果他在这次路径选择中选择的终点是(2,4)

点,当他到达(2,4)点时将拥有1单位的能量,并开始下一次路径选择,直到到达(6,6)点。
我们的问题是机器人有多少种方式从起点走到终点。这可能是一个很大的数,输出的结果对10000取模。

Input

第一行输入一个整数T,表示数据的组数。
对于每一组数据第一行输入两个整数n,m(1 <= n,m
<= 100)。表示棋盘的大小。接下来输入n行,每行m个整数e(0 <= e < 20)。

Output

对于每一组数据输出方式总数对10000取模的结果.

Sample Input

1

6 6

4 5 6 6 4 3

2 2 3 1 7 2

1 1 4 6 2 7

5 8 4 3 9 5

7 6 6 2 1 5

3 1 1 3 7 2

Sample Output

3948

 1 #include<stdio.h>
 2 #include<string.h>
 3 int n,m;
 4 int map[110][110];
 5 int dp[110][110];
 6 int dfs(int x,int y)
 7 {
 8     int sum=0,i,j;
 9     if(x==n&&y==m)
10         return 1;
11     if(dp[x][y]>=0)
12         return dp[x][y];
13     for(i=0; i<=map[x][y]; i++)
14         for(j=0; j<=map[x][y]; j++)
15         {
16             if((i+j)<=map[x][y]&&i+x<=n&&j+y<=m&&(i+j)!=0)
17             {
18                 sum+=dfs(i+x,j+y);
19                 sum%=10000;
20             }
21         }
22     dp[x][y]=sum;
23     return dp[x][y];
24 }
25 int main()
26 {
27     int t,i,j;
28     scanf("%d",&t);
29     while(t--)
30     {
31         scanf("%d%d",&n,&m);
32         for(i=1; i<=n; i++)
33             for(j=1; j<=m; j++)
34                 scanf("%d",&map[i][j]);
35         memset(dp,-1,sizeof(dp));
36         printf("%d\n",dfs(1,1));
37     }
38     return 0;
39 }

hdu1978(记忆化搜索),布布扣,bubuko.com

时间: 2024-10-10 05:38:29

hdu1978(记忆化搜索)的相关文章

HDU--1142--A Walk Through the Forest--深广搜/DP/最短路径/记忆化搜索

A Walk Through the Forest Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 5948    Accepted Submission(s): 2191 Problem Description Jimmy experiences a lot of stress at work these days, especial

HDU 1513 Palindrome:LCS(最长公共子序列)or 记忆化搜索

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1513 题意: 给你一个字符串s,你可以在s中的任意位置添加任意字符,问你将s变成一个回文串最少需要添加字符的个数. 题解1(LCS): 很神奇的做法. 先求s和s的反串的LCS,也就是原串中已经满足回文性质的字符个数. 然后要变成回文串的话,只需要为剩下的每个落单的字符,相应地插入一个和它相同的字符即可. 所以答案是:s.size()-LCS(s,rev(s)) 另外,求LCS时只会用到lcs[i-

uva 1076 - Password Suspects(AC自动机+记忆化搜索)

题目链接:uva 1076 - Password Suspects 题目大意:有一个长度为n的密码,存在m个子串,问说有多少种字符串满足,如果满足个数不大于42,按照字典序输出. 解题思路:根据子串构建AC自动机,然后记忆化搜索,dp[i][u][s]表示第i个字符,在u节点,匹配s个子串. #include <cstdio> #include <cstring> #include <queue> #include <string> #include <

poj 1579(动态规划初探之记忆化搜索)

Function Run Fun Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 17843   Accepted: 9112 Description We all love recursion! Don't we? Consider a three-parameter recursive function w(a, b, c): if a <= 0 or b <= 0 or c <= 0, then w(a, b

记忆化搜索,FatMouse and Cheese

1.从gird[0][0]出发,每次的方向搜索一下,每次步数搜索一下 for(i=0; i<4; i++) { for(j=1; j<=k; j++) { int tx=x+d[i][0]*j; int ty=y+d[i][1]*j; if(tx>=0&&tx<n&&ty>=0&&ty<n&&grid[x][y]<grid[tx][ty]) { int temp=memSearch(tx,ty); i

LightOJ1417 Forwarding Emails(强连通分量+缩点+记忆化搜索)

题目大概是,每个人收到信息后会把信息发给他认识的一个人如此下去,问一开始要把信息发送给谁这样看到信息的人数最多. 首先找出图中的SCC并记录每个SCC里面的点数,如果传到一个SCC,那么里面的人都可以看到信息. 然后SCC缩点后就形成DAG,直接记忆化搜索,d(u)搜索从u点出发开始传最多能传多少人. 最后就是找答案了. 1 #include<cstdio> 2 #include<cstring> 3 #include<algorithm> 4 using namesp

POJ1088(记忆化搜索)

经典记忆化搜索题目.当 从每个点一次进行搜索时要采用 记忆化搜索 #include"cstdio" #include"algorithm" using namespace std; const int MAXN=105; int g[MAXN][MAXN]; int t[MAXN][MAXN]; int maxn; int n,m; int by,bx; int ans; int dx[4]={1,0,-1,0}; int dy[4]={0,1,0,-1}; int

BZOJ 1079: [SCOI2008]着色方案 记忆化搜索

1079: [SCOI2008]着色方案 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/problem.php?id=1079 Description 有n个木块排成一行,从左到右依次编号为1~n.你有k种颜色的油漆,其中第i种颜色的油漆足够涂ci个木块.所有油漆刚好足够涂满所有木块,即c1+c2+...+ck=n.相邻两个木块涂相同色显得很难看,所以你希望统计任意两个相邻木块颜色不同的

Codeforces Div.301D Bad Luck Island(概率dp+记忆化搜索)

一道概率dp问题. 题目链接:http://codeforces.com/contest/540/problem/D 题目大意:一个岛上有r个石头,s个剪子,p个布,他们之间随机挑出两个相遇,如果不是相同物种,就会有一个消失,分别求出最后这座岛上只剩下一个物种的概率. 我们用dp[i][j][k]来存储i个石头,j个剪刀,k个布时,某物种的存活概率,共dp三次,算出三个物种分别的概率. 首先,我们需要把对应想求的物种概率初始化,这里以石头为例,那么对于i从1到r,不难理解dp[i][0][0]=