Counting on a directed graph Problem Code: GRAPHCNT
All submissions for this problem are available.
Read problems statements in Mandarin Chineseand Russian.
Given an directed graph with N nodes (numbered from 1 to N) and M edges, calculate the number of unordered pairs (X, Y) such there exist two paths, one from node 1 to node X, and another one from node 1 to node Y, such that they don‘t share any node except node 1.
Input
There is only one test case in one test file.
The first line of each test case contains two space separated integers N, M. Each of the next M lines contains two space separated integers u, v denoting a directed edge of graph G, from node u to node v. There are no multi-edges and self loops in the graph.
Output
Print a single integer corresponding to the number of unordered pairs as asked in the problem..
Constraints and Subtasks
- 1 ≤ N ≤ 105
- 0 ≤ M ≤ 5 * 105
Subtask 1: (30 points)
- The graph is a Directed Acyclic Graph (DAG)i.e. there is no cycle in the graph.
Subtask 2: (20 points)
- N * M ≤ 50000000
Subtask 3 (50 points)
- No additional constraints
Example
Input: 6 6 1 2 1 3 1 4 2 5 2 6 3 6 Output: 14
Explanation
There are 14 pairs of vertices as follows:
(1,2)
(1,3)
(1,4)
(1,5)
(1,6)
(2,3)
(2,4)
(2,6)
(3,4)
(3,5)
(3,6)
(4,5)
(4,6)
(5,6)
Author:5★ztxz16
Tester:7★kevinsogo
Editorial:http://discuss.codechef.com/problems/GRAPHCNT
Tags:dominatormay15medium-hardztxz16
Date Added:25-03-2015
Time Limit:2 secs
Source Limit:50000 Bytes
Languages:ADA, ASM, BASH, BF, C, C99 strict, CAML, CLOJ, CLPS, CPP 4.3.2, CPP 4.9.2, CPP14, CS2, D, ERL, FORT, FS, GO, HASK, ICK, ICON, JAVA, JS, LISP clisp, LISP sbcl, LUA, NEM, NICE, NODEJS, PAS fpc, PAS gpc, PERL, PERL6, PHP, PIKE, PRLG, PYPY, PYTH, PYTH 3.4, RUBY, SCALA, SCM chicken, SCM guile, SCM qobi, ST, TCL, TEXT, WSPC
题意:
https://s3.amazonaws.com/codechef_shared/download/translated/MAY15/mandarin/GRAPHCNT.pdf
分析:
建出支配树,然后统计1号节点的每个儿子内部点对数量,这就是不合法的点对数量,用总的点对数量减去不合法的就好了...
代码:
#include<algorithm> #include<iostream> #include<cstring> #include<cstdio> #include<stack> using namespace std; const int maxn=100000+5,maxm=500000+5; int n,m,tot,f[maxn],fa[maxn],id[maxn],dfn[maxn],siz[maxn],node[maxn],semi[maxn],idom[maxn]; long long ans; stack<int> dom[maxn]; struct M{ int cnt,hd[maxn],to[maxm],nxt[maxm]; inline void init(void){ cnt=0; memset(hd,-1,sizeof(hd)); } inline void add(int x,int y){ to[cnt]=y;nxt[cnt]=hd[x];hd[x]=cnt++; } }G,tr; inline bool cmp(int x,int y){ return dfn[semi[x]]<dfn[semi[y]]; } inline int find(int x){ if(f[x]==x) return x; int fx=find(f[x]); node[x]=min(node[f[x]],node[x],cmp); return f[x]=fx; } inline void dfs(int x){ dfn[x]=++tot;id[tot]=x; for(int i=tr.hd[x];i!=-1;i=tr.nxt[i]) if(!dfn[tr.to[i]]) dfs(tr.to[i]),fa[tr.to[i]]=x; } inline void LT(void){ dfs(1);dfn[0]=tot<<1; for(int i=tot,x;i>=1;i--){ x=id[i]; if(i!=1){ for(int j=G.hd[x],v;j!=-1;j=G.nxt[j]) if(dfn[G.to[j]]){ v=G.to[j]; if(dfn[v]<dfn[x]){ if(dfn[v]<dfn[semi[x]]) semi[x]=v; } else{ find(v); if(dfn[semi[node[v]]]<dfn[semi[x]]) semi[x]=semi[node[v]]; } } dom[semi[x]].push(x); } while(dom[x].size()){ int y=dom[x].top();dom[x].pop();find(y); if(semi[node[y]]!=x) idom[y]=node[y]; else idom[y]=x; } for(int j=tr.hd[x];j!=-1;j=tr.nxt[j]) if(fa[tr.to[j]]==x) f[tr.to[j]]=x; } for(int i=2,x;i<=tot;i++){ x=id[i]; if(semi[x]!=idom[x]) idom[x]=idom[idom[x]]; } idom[id[1]]=0; } signed main(void){ tr.init();G.init(); scanf("%d%d",&n,&m); for(int i=1,x,y;i<=m;i++) scanf("%d%d",&x,&y),tr.add(x,y),G.add(y,x); for(int i=1;i<=n;i++) f[i]=node[i]=i; LT();ans=1LL*tot*(tot-1); for(int i=tot;i>=2;i--){ siz[id[i]]++; if(idom[id[i]]!=1) siz[idom[id[i]]]+=siz[id[i]]; else ans-=1LL*siz[id[i]]*(siz[id[i]]-1); } ans>>=1; printf("%lld\n",ans); return 0; }
By NeighThorn