CSU 1804: 有向无环图 拓扑排序 图论

1804: 有向无环图

Submit Page   Summary   Time Limit: 5 Sec     Memory Limit: 128 Mb     Submitted: 716     Solved: 298


Description

Bobo 有一个 n 个点,m 条边的有向无环图(即对于任意点 v,不存在从点 v 开始、点 v 结束的路径)。

为了方便,点用 1,2,…,n 编号。 设 count(x,y) 表示点 x 到点 y 不同的路径数量(规定 count(x,x)=0),Bobo 想知道

除以 (109+7) 的余数。

其中,ai,bj 是给定的数列。

Input

输入包含不超过 15 组数据。

每组数据的第一行包含两个整数 n,m (1≤n,m≤105).

接下来 n 行的第 i 行包含两个整数 ai,bi (0≤ai,bi≤109).

最后 m 行的第 i 行包含两个整数 ui,vi,代表一条从点 ui 到 vi 的边 (1≤ui,vi≤n)。

Output

对于每组数据,输出一个整数表示要求的值。

Sample Input

3 3
1 1
1 1
1 1
1 2
1 3
2 3
2 2
1 0
0 2
1 2
1 2
2 1
500000000 0
0 500000000
1 2

Sample Output

4
4
250000014

Hint

Source

湖南省第十二届大学生计算机程序设计竞赛

先将每个点i对应的count(i,j)*bj算出来然后乘ai,累加就是答案,注意这里要类似拓扑排序那样,不过要倒着做,避免后效性

参考博客 http://blog.csdn.net/qq_21057881/article/details/52431139

#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<iostream>
#include<vector>
#include<queue>
using namespace std;
#define LL long long
const int maxn = 1e5+7;
const int mod = 1e9+7;
vector<int>e[maxn];
int a[maxn],b[maxn],d[maxn];
int ans[maxn];
int main(){
    int n,m;
    while(cin >> n >> m){
        for(int i=1;i<=n;i++){
            e[i].clear();
        }
        memset(d,0,sizeof(d));
        memset(ans,0,sizeof(ans));
        for(int i=1;i<=n;i++){
            cin >> a[i] >> b[i];
        }
        for(int i=1;i<=m;i++){
            int u,v;
            cin >> u >> v;
            e[v].push_back(u);
            d[u]++;//终点为u的路径的条数
        }
        queue<int> q;
        for(int i=1;i<=n;i++){
            if(d[i] == 0){//把终点为i的路径数为0的点加入队列
                q.push(i);
            }
        }
        while(!q.empty()){
            int v = q.front();
            q.pop();
            for(int i=0;i<e[v].size();i++){
                int u = e[v][i];
                ans[u] = (ans[u] + (ans[v] + b[v])%mod)%mod;
                //之所以是加b[v],是因为乘是相当于整体而言,一条就是1*b[v]相当于加b[v]
                d[u]--;
                if(d[u] == 0){
                    q.push(u);
                }
            }
        }
        LL res = 0;
        for(int i=1;i<=n;i++){
            res = (res + 1LL*ans[i]*a[i]%mod)%mod;
        }
        cout << res << endl;
    }
    return 0;
}
时间: 2024-09-30 19:24:21

CSU 1804: 有向无环图 拓扑排序 图论的相关文章

CSU 1804 - 有向无环图 - [树形DP]

题目链接:http://acm.csu.edu.cn/csuoj/problemset/problem?pid=1804 Bobo 有一个 n 个点,m 条边的有向无环图(即对于任意点 v,不存在从点 v 开始.点 v 结束的路径). 为了方便,点用 1,2,-,n 编号. 设 count(x,y) 表示点 x 到点 y 不同的路径数量(规定 count(x,x)=0),Bobo 想知道 除以 (10 9+7) 的余数. 其中,a i,b j 是给定的数列. Input 输入包含不超过 15 组

图-&gt;有向无环图-&gt;拓扑排序

文字描述 关于有向无环图的基础定义: 一个无环的有向图称为有向无环图,简称DAG图(directed acycline graph).DAG图是一类较有向树更一般的特殊有向图. 举个例子说明有向无环图的应用.假如有一个表达式: ((a+b)*(b*(c+d))+(c+d)*e)*((c+d)*e), 可以用之前讨论的二叉树来表示,也可以用有向无环图来表示,如下图.显然有向无环图实现了对相同子式的共享,从而比二叉树更节省空间. 关于拓扑排序的基础定义: 由某个集合上的一个偏序得到该集合上的一个全须

CSU 1804: 有向无环图(拓扑排序)

http://acm.csu.edu.cn/csuoj/problemset/problem?pid=1804 题意:…… 思路:对于某条路径,在遍历到某个点的时候,之前遍历过的点都可以到达它,因此在这个时候对答案的贡献就是∑(a1 + a2 + a3 + ... + ai) * bv,其中a是之前遍历到的点,v是当前遍历的点. 这样想之后就很简单了.类似于前缀和,每次遍历到一个v点,就把a[u]加给a[v],然后像平时的拓扑排序做就行了. 1 #include <bits/stdc++.h>

1804: 有向无环图

1804: 有向无环图 Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 341  Solved: 152[Submit][Status][Web Board] Description Bobo 有一个 n 个点,m 条边的有向无环图(即对于任意点 v,不存在从点 v 开始.点 v 结束的路径). 为了方便,点用 1,2,…,n 编号. 设 count(x,y) 表示点 x 到点 y 不同的路径数量(规定 count(x,x)=0),Bobo 想知道

【拓扑】【宽搜】CSU 1084 有向无环图 (2016湖南省第十二届大学生计算机程序设计竞赛)

题目链接: http://acm.csu.edu.cn/OnlineJudge/problem.php?id=1804 题目大意: 一个有向无环图(DAG),有N个点M条有向边(N,M<=105),每个点有两个值ai,bi(ai,bi<=109),count(i,j)表示从i走到j的方案数. 求mod 109+7的值. 题目思路: [拓扑][宽搜] 首先将式子拆开,每个点I走到点J的d[j]一次就加上一次ai,这样一个点被i走到的几次就加上几次ai,相当于count(i,j)*ai,最终只要求

csu oj 1804: 有向无环图 (dfs回溯)

题目链接:http://acm.csu.edu.cn/OnlineJudge/problem.php?id=1804 中文题意就不说了. dfs从底到根回溯即可,看代码应该能清楚. 1 //#pragma comment(linker, "/STACK:102400000, 102400000") 2 #include <algorithm> 3 #include <iostream> 4 #include <cstdlib> 5 #include

有向无环图

1804: 有向无环图 Time Limit: 5 Sec     Memory Limit: 128 Mb     Submitted: 751     Solved: 313 Description Bobo 有一个 n 个点,m 条边的有向无环图(即对于任意点 v,不存在从点 v 开始.点 v 结束的路径). 为了方便,点用 1,2,…,n 编号. 设 count(x,y) 表示点 x 到点 y 不同的路径数量(规定 count(x,x)=0),Bobo 想知道 除以 (109+7) 的余

图的邻接表表示与无环图的拓扑排序

一.  图的最常用的表示方法是邻接矩阵和邻接表. 1,邻接矩阵 邻接矩阵其实就是一个二维数组,对于每条边<u,v>,我们就令A[u][v] = 1,如果图为有权图,我们也可以令A[u][v]等于该权,这么表示的优点是非常简单,但是它的空间需求很大,如果图是稠密的,邻接矩阵是合适的表示方法,如果图是稀疏的,那这种方法就太浪费空间了,下面给出图的邻接矩阵表示例子. 2 邻接表 邻接表是图的常用储存结构之一.邻接表由表头结点和表结点两部分组成,其中图中每个顶点均对应一个存储在数组中的表头结点.如下图

有向无环图的应用—AOV网 和 拓扑排序

有向无环图:无环的有向图,简称 DAG (Directed Acycline Graph) 图. 一个有向图的生成树是一个有向树,一个非连通有向图的若干强连通分量生成若干有向树,这些有向数形成生成森林. 在工程计划和管理方面的应用 除最简单的情况之外,几乎所有的工程都可分为若干个称作“活动”的子工程,并且这些子工程之间通常受着一定条件的约束,例如:其中某些子工程必须在另一些子工 程完成之后才能开始.对整个工程和系统,人们关心的是两方面的问题: 一是工程能否顺利进行,即工程流程是否“合理”: 二是