HDU 1397 Goldbach's Conjecture(素数打表)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1397

Problem Description

Goldbach‘s Conjecture: For any even number n greater than or equal to 4, there exists at least one pair of prime numbers p1 and p2 such that n = p1 + p2.

This conjecture has not been proved nor refused yet. No one is sure whether this conjecture actually holds. However, one can find such a pair of prime numbers, if any, for a given even number. The problem here is to write a program that reports the number of
all the pairs of prime numbers satisfying the condition in the conjecture for a given even number.

A sequence of even numbers is given as input. Corresponding to each number, the program should output the number of pairs mentioned above. Notice that we are interested in the number of essentially different pairs and therefore you should not count (p1, p2)
and (p2, p1) separately as two different pairs.

Input

An integer is given in each input line. You may assume that each integer is even, and is greater than or equal to 4 and less than 2^15. The end of the input is indicated by a number 0.

Output

Each output line should contain an integer number. No other characters should appear in the output.

Sample Input

6
10
12
0

Sample Output

1
2
1

Source

Asia 1998, Tokyo (Japan)

题意:

给出一个n,找出两个素数a,b且a+b=n;问有多少对这样的素数!

代码如下:

#include <cstdio>
int pri[40017];
int main()
{
    for(int i = 2; i*i < 32768; i++)
    {
        if(!pri[i])
        {
            for(int j = i; j*i < 32768; j++)
            {
                pri[j*i] = 1;
            }
        }
    }
    int n;
    while(scanf("%d",&n) && n)
    {
        int k = 0;
        for(int i = 2; i <= n/2; i++)
        {
            if(!pri[i] && !pri[n-i])
                k++;
        }
        printf("%d\n",k);
    }
    return 0;
}

HDU 1397 Goldbach's Conjecture(素数打表)

时间: 2024-10-18 23:04:05

HDU 1397 Goldbach's Conjecture(素数打表)的相关文章

HDU 1397 Goldbach&#39;s Conjecture【素数打表】

题意:给出n,问满足a+b=n且a,b都为素数的有多少对 将素数打表,再枚举 1 #include<iostream> 2 #include<cstdio> 3 #include<cstring> 4 #include <cmath> 5 #include<stack> 6 #include<vector> 7 #include<map> 8 #include<algorithm> 9 #define mod=

LightOJ 1259 Goldbach`s Conjecture 素数打表

题目大意:求讲一个整数n分解为两个素数的方案数. 题目思路:素数打表,后遍历 1-n/2,寻找方案数,需要注意的是:C/C++中 bool类型占用一个字节,int类型占用4个字节,在素数打表中采用bool类型可以节约不少内存. #include<iostream> #include<algorithm> #include<cstring> #include<vector> #include<stdio.h> #include<queue&g

杭电 HDU ACM 1397 Goldbach&#39;s Conjecture

Goldbach's Conjecture Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 4976    Accepted Submission(s): 1901 Problem Description Goldbach's Conjecture: For any even number n greater than or equal

POJ 2262 Goldbach&#39;s Conjecture(素数相关)

POJ 2262 Goldbach's Conjecture(素数相关) http://poj.org/problem?id=2262 题意: 给你一个[6,1000000]范围内的偶数,要你将它表示成两个素数相加和的形式.如果存在多组解,请输出两个素数差值最大的解. 分析: 首先我们用素数筛选法求出100W以内的所有素数. 筛选法求素数可见: http://blog.csdn.net/u013480600/article/details/41120083 对于给定的数X,如果存在素数a+素数b

POJ 2262 Goldbach&#39;s Conjecture (素数判断)

Goldbach's Conjecture Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 37693   Accepted: 14484 Description In 1742, Christian Goldbach, a German amateur mathematician, sent a letter to Leonhard Euler in which he made the following conject

POJ 2262 Goldbach&amp;#39;s Conjecture(素数相关)

POJ 2262 Goldbach's Conjecture(素数相关) http://poj.org/problem?id=2262 题意: 给你一个[6,1000000]范围内的偶数,要你将它表示成两个素数相加和的形式.假设存在多组解,请输出两个素数差值最大的解. 分析: 首先我们用素数筛选法求出100W以内的全部素数. 筛选法求素数可见: http://blog.csdn.net/u013480600/article/details/41120083 对于给定的数X,假设存在素数a+素数b

Goldbach`s Conjecture LightOJ - 1259 (素数打表 哥德巴赫猜想)

题意: 就是哥德巴赫猜想...任意一个偶数 都可以分解成两个(就是一对啦)质数的加和 输入一个偶数求有几对.. 解析: 首先! 素数打表..因为 质数 + 质数 = 偶数 所以 偶数 - 质数 = 质数 ... 我真是蠢啊 还有  vis要用bool类型的!!!!  int会直接爆 代码如下: #include <iostream> #include <cstdio> #include <sstream> #include <cstring> #includ

POJ 2262 Goldbach&#39;s Conjecture(素数筛选法)

Description In 1742, Christian Goldbach, a German amateur mathematician, sent a letter to Leonhard Euler in which he made the following conjecture: Every even number greater than 4 can be written as the sum of two odd prime numbers. For example: 8 =

hdu 3792 Twin Prime Conjecture 前缀和+欧拉打表

Twin Prime Conjecture Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Problem Description If we define dn as: dn = pn+1-pn, where pi is the i-th prime. It is easy to see that d1 = 1 and dn=even for n>1. Twin Prime