Mondriaan's Dream(POJ 2411状态压缩dp)

题意:用1*2的方格填充m*n的方格不能重叠,问有多少种填充方法

分析:dp[i][j]表示i行状态为j时的方案数,对于j,0表示该列竖放(影响下一行的该列),1表示横放成功(影响下一列)或上一列竖放成功。状态转移时,枚举每一行可能的状态上一行取反得下一行能放的状态。

#include <map>
#include <set>
#include <list>
#include <cmath>
#include <queue>
#include <stack>
#include <cstdio>
#include <vector>
#include <string>
#include <cctype>
#include <complex>
#include <cassert>
#include <utility>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
using namespace std;
typedef pair<int,int> PII;
typedef long long ll;
#define lson l,m,rt<<1
#define pi acos(-1.0)
#define rson m+1,r,rt<<11
#define All 1,N,1
#define read freopen("in.txt", "r", stdin)
const ll  INFll = 0x3f3f3f3f3f3f3f3fLL;
const int INF= 0x7ffffff;
const int mod =  1000000007;
int n,m;
ll dp[15][1<<11],x;
//枚举可能的状态
void dfs(int i,int j,int p){
    if(p==m){
        dp[i][j]+=x;
        return;
    }
    dfs(i,j,p+1);
    if(p+2<=m&&!(j&(1<<p))&&!(j&(1<<(p+1))))
    dfs(i,(j|(1<<p)|(1<<(p+1))),p+2);
}
void solve(){
    memset(dp,0,sizeof(dp));
    x=1;
    dfs(1,0,0);
    ll cas=(1<<m);
//x为上一行可能的方案总数
    for(int i=2;i<=n;++i){
        for(int j=0;j<cas;++j){
            if(dp[i-1][j]){
            x=dp[i-1][j];
            dfs(i,~j&(cas-1),0);
            }
        }
    }
    printf("%I64d\n",dp[n][cas-1]);
}
int main()
{
    while(~scanf("%d%d",&n,&m)){
        if(n==0&&m==0)break;
        solve();
    }
return 0;
}

  

Mondriaan's Dream(POJ 2411状态压缩dp)

时间: 2024-11-03 22:02:57

Mondriaan's Dream(POJ 2411状态压缩dp)的相关文章

Mondriaan&#39;s Dream - POJ 2411(状态压缩)

题目大意:有一些1*2的矩形,现在用这些小矩形覆盖M*N的大矩形,不能重复覆盖,并且要覆盖完全,求有多少种覆盖方式. 分析:可以使用1和0两种状态来表示这个位置有没有放置,1表示放置,0表示没有放置,可以有三种放置方式. 一,竖着放. 二,不放.三,横着放.直接DFS这些情况就行了................还是递归容易理解. 代码如下: =============================================================================

POJ 3311 状态压缩DP

题意:求从0点走到所有点又走回来的最短距离 该题又很多做法,我用的是弗洛伊德+状态压缩 先遍历所有点,求出两点间最短的距离,而后用状态压缩表示该点是否走过,(1<<n)-1则表示所有点都走过. 附AC代码 #include<stdio.h> #include<string.h> int map[12][12]; int dp[(1<<12)+1][12]; int min1(int a,int b) { if(a<b) return a; return

POJ 2411 状态压缩递,覆盖方案数

无非就是横着放与竖着放,状态中用1表示覆盖,0表示未覆盖. 1 #include <iostream> 2 #include <vector> 3 #include <algorithm> 4 #include <string> 5 #include <string.h> 6 #include <stdio.h> 7 #include <queue> 8 #include <stack> 9 #include

poj 3250 状态压缩dp入门

Corn Fields Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 7798   Accepted: 4159 Description Farmer John has purchased a lush new rectangular pasture composed of M by N (1 ≤ M ≤ 12; 1 ≤ N ≤ 12) square parcels. He wants to grow some yumm

poj 2688 状态压缩dp解tsp

题意: 裸的tsp. 分析: 用bfs求出任意两点之间的距离后可以暴搜也可以用next_permutation水,但效率肯定不如状压dp.dp[s][u]表示从0出发访问过s集合中的点,目前在点u走过的最短路程. 代码: //poj 2688 //sep9 #include <iostream> #include <queue> using namespace std; const int maxW=32; const int maxN=12; int dx[4]={-1,1,0,

hdu1143 状态压缩dp 记忆化搜索写法

http://poj.org/problem?id=1143 Description Christine and Matt are playing an exciting game they just invented: the Number Game. The rules of this game are as follows. The players take turns choosing integers greater than 1. First, Christine chooses a

poj 2411 Mondriaan&#39;s Dream(状态压缩+dp)

 题意:用1*2砖块铺满n*m的房间. 思路转自:http://www.cnblogs.com/scau20110726/archive/2013/03/14/2960448.html 因为这道题输入范围在11*11之间,所以可以先打表直接输出.......... 状态压缩DP 经典覆盖问题,输入n和m表示一个n*m的矩形,用1*2的方块进行覆盖,不能重叠,不能越出矩形边界,问完全覆盖完整个矩形有多少种不同的方案 其中n和m均为奇数的话,矩形面积就是奇数,可知是不可能完全覆盖的.接着我们来看

[POJ 2411] Mondriaan&#39;s Dream 状态压缩DP

题意 给定一个 n * m 的矩形. 问有多少种多米诺骨牌覆盖. n, m <= 11 . 实现 1 #include <cstdio> 2 #include <cstring> 3 #include <cstdlib> 4 #include <cctype> 5 #define F(i, a, b) for (register int i = (a); i <= (b); i++) 6 #define LL long long 7 inline

A - Mondriaan&#39;s Dream (状态压缩DP)

Squares and rectangles fascinated the famous Dutch painter Piet Mondriaan. One night, after producing the drawings in his 'toilet series' (where he had to use his toilet paper to draw on, for all of his paper was filled with squares and rectangles),