对应POJ题目:点击打开链接
Time Limit: 5000MS | Memory Limit: 65536KB | 64bit IO Format: %I64d & %I64u |
Description
There is a number of disjoint vertical line segments in the plane. We say that two segments are horizontally visible if they can be connected by a horizontal line segment that does not have any common points with other vertical segments. Three different vertical
segments are said to form a triangle of segments if each two of them are horizontally visible. How many triangles can be found in a given set of vertical segments?
Task
Write a program which for each data set:
reads the description of a set of vertical segments,
computes the number of triangles in this set,
writes the result.
Input
The first line of the input contains exactly one positive integer d equal to the number of data sets, 1 <= d <= 20. The data sets follow.
The first line of each data set contains exactly one integer n, 1 <= n <= 8 000, equal to the number of vertical line segments.
Each of the following n lines consists of exactly 3 nonnegative integers separated by single spaces:
yi‘, yi‘‘, xi - y-coordinate of the beginning of a segment, y-coordinate of its end and its x-coordinate, respectively. The coordinates satisfy 0 <= yi‘ < yi‘‘ <= 8 000, 0 <= xi <= 8 000. The segments are disjoint.
Output
The output should consist of exactly d lines, one line for each data set. Line i should contain exactly one integer equal to the number of triangles in the i-th data set.
Sample Input
1 5 0 4 4 0 3 1 3 4 2 0 2 2 0 2 3
Sample Output
1
Source
题意:在一个平面内,有一些竖直的线段,若两条竖直线段之间可以连一条水平线,这条水平线不与其他竖直线段相交,称这两条竖直线段为“相互可见”的。若存在三条竖直线段,两两“相互可见”,则构成“线段三角形”。给出一些竖直的线段,问一共有多少“线段三角形”。
思路:求两两“相互可见”的所有可能,暴力求解,复杂度n^3;线段树结点维护区间有多少条可见线段
比较低效的方法╮(╯_╰)╭,有空改善。。。
#include<cstdio> #include<cstdlib> #include<cmath> #include<map> #include<queue> #include<stack> #include<vector> #include<algorithm> #include<cstring> #include<string> #include<iostream> #define ms(x,y) memset(x,y,sizeof(x)) #define N 8001<<1 const int MAXN=1000+10; const int INF=1<<30; using namespace std; int color[N<<2]; bool vis[N>>1][N>>1]; struct Line { int y1,y2,x; }line[N>>1]; void down(int rt) { if(color[rt]) { color[rt<<1]=color[rt]; color[rt<<1|1]=color[rt]; color[rt]=0; } } void updata(int rt, int left, int right, int l, int r, int c) { if(left==l && right==r){ color[rt]=c; return; } down(rt); int mid=(left+right)>>1; if(mid>=r) updata(rt<<1, left, mid, l, r, c); else if(mid<l) updata(rt<<1|1, mid+1, right, l, r, c); else{ updata(rt<<1, left, mid, l, mid, c); updata(rt<<1|1, mid+1, right, mid+1, r, c); } } void query(int rt, int left, int right, int l, int r, int id) { if(color[rt]){ vis[id][color[rt]]=vis[color[rt]][id]=1; return; } if(left==right) return; down(rt); int mid=(left+right)>>1; if(mid>=r) query(rt<<1, left, mid, l, r, id); else if(mid<l) query(rt<<1|1, mid+1, right, l, r, id); else{ query(rt<<1, left, mid, l, mid, id); query(rt<<1|1, mid+1, right, mid+1, r, id); } } bool cmp(Line l1, Line l2) { return l1.x<l2.x; } int main() { //freopen("in.txt","r",stdin); int T; scanf("%d", &T); while(T--) { ms(vis,0); ms(color,0); int n; scanf("%d", &n); for(int i=0; i<n; i++){ scanf("%d%d%d", &line[i].y1, &line[i].y2, &line[i].x); line[i].y1<<=1; line[i].y2<<=1; } sort(line, line+n, cmp); int cnt=0; for(int i=0; i<n; i++){ ++cnt; query(1, 0, N, line[i].y1, line[i].y2, cnt); updata(1, 0, N, line[i].y1, line[i].y2, cnt); } int ans=0; for(int i=1; i<=n; i++){ for(int j=i+1; j<=n; j++){ if(!vis[i][j]) continue; for(int k=j+1; k<=n; k++) if(vis[j][k] && vis[i][k]) ans++; } } printf("%d\n", ans); } return 0; }