c++ 八皇后问题(转载)

转自 雪狼的程序故事

http://www.cnblogs.com/gaoteng/archive/2012/04/11/2442692.html

经典回溯算法(八皇后问题)

今天偶尔看到了一个算法问题(八皇后问题),回想一下还是在算法课上学习过的,于是,自己总结了一下,写了这篇日志

算法提出:

在国际象棋棋盘上(8*8)放置八个皇后,使得任意两个皇后之间不能在同一行,同一列,也不能位于同于对角线上。问共有多少种不同的方法,并且指出各种不同的放法。

算法思路:

  首先我们分析一下问题的解,我们每取出一个皇后,放入一行,共有八种不同的放法,然后再放第二个皇后,同样如果不考虑规则,还是有八种放法。于是我们可以用一个八叉树来描述这个过程。从根节点开始,树每增加一层,便是多放一个皇后,直到第8层(根节点为0层),最后得到一个完全八叉树。  

  紧接着我们开始用深度优先遍历这个八叉树,在遍历的过程中,进行相应的条件的判断。以便去掉不合规则的子树。

  那么具体用什么条件来进行子树的裁剪呢?

  我们先对问题解的结构做一个约定。

  用X[i]来表示,在第i行,皇后放在了X[i]这个位置。

  于是我们考虑第一个条件,不能再同一行,同一列于是我们得到x[i]不能相同。剩下一个条件是不能位于对角线上,这个条件不是很明显,我们经过分析得到,设两个不同的皇后分别在j,k行上,x[j],x[k]分别表示在j,k行的那一列上。那么不在同一对角线的条件可以写为abs((j-k))!=abs(x[j]-x[k]),其中abs为求绝对值的函数。

  于是下面我们便可以利用一个递归的调用来遍历八叉树。

  我们首先定义一个访问某节点所有子节点的函数

void backtrack(int t)
{
    if(t>num) //num为皇后的数目
    {
        sum++;//sum为所有的可行的解
        for(int m = 1;m<num;m++)
        {
            cout<<x[m];//这一行用输出当递归到叶节点的时候,一个可行解
        }
        cout<<endl;
    }
    else
        for(int i = 1;i<=num;i++)
        {
            x[t] = i;
            if(place(t)) backtrack(t+1);//此处的place函数用来进行我们上面所说的条件的判断,如果成立,进入下一级递归
        }
}

下面我们定义了条件判断函数

bool place(int k)
{
    for(int j = 1;j<k;j++)
        if(abs(x[k] - x[j]) == abs(k-j)||x[j] == x[k])
            return false;
        return true;

}

上面的函数便是按照我们上面说介绍的条件进行判断。

最后就是主程序的调用了

static int num;
static int *x;
static int sum;
void main()
{
    num = 8;
    sum = 0;
    x = new int[num+1];
    for(int i= 0;i<=num;i++)
        x[i] = 0;
    backtrack(1);
    cout<<"方案共有"<<sum;

}

通过上面的总结,是自己对整个算法有了更深刻的理解,熟悉的回溯法的思想。

时间: 2024-10-06 09:51:16

c++ 八皇后问题(转载)的相关文章

洛谷 P1219 八皇后 题解

此文为博主原创题解,转载时请通知博主,并把原文链接放在正文醒目位置. 题目链接:https://www.luogu.org/problem/show?pid=1219 题目描述 检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行.每列有且只有一个,每条对角线(包括两条主对角线的所有平行线)上至多有一个棋子. 上面的布局可以用序列2 4 6 1 3 5来描述,第i个数字表示在第i行的相应位置有一个棋子,如下: 行号 1 2 3 4 5 6 列号 2 4 6 1 3 5 这只是跳

【剑指offer】八皇后问题

转载请注明出处:http://blog.csdn.net/ns_code/article/details/26614999 剑指offer上解决八皇后问题,没实用传统的递归或非递归回溯法,而是用了非常巧妙的全排列法. 先说下八皇后问题:在8 X 8的国际象棋上摆放八个皇后,使其不能相互攻击,即随意两个皇后不得处于同一行,同一列或者允许对角线上,求出全部符合条件的摆法. 全排列解决八皇后问题的思路例如以下: 因为8个皇后不能处在同一行,那么肯定每一个皇后占领一行,这样能够定义一个数组A[8],数组

初学者看待八皇后问题

(原创,未经允许不得转载) 经典的八皇后问题 题目: 八皇后问题就是在8*8的棋盘上放置8个皇后,使其任意两个不在同一行.同一列.同一斜线上. 解题思路: 去掉行这个因素,然后去考虑是否在同一列或同一斜线上.每个摆放成功的棋子在(i,x[i]),然后设置当前行,然后在该行从第一列一直试探到第8列,看是否符合条件,同时只有当当前行之前的棋子都符合条件,才能继续下一行,直到第八行,进行输出. 代码: #include "stdafx.h" #include "iostream&q

九度 1140 - 回溯 - 八皇后

会下国际象棋的人都很清楚:皇后可以在横.竖.斜线上不限步数地吃掉其他棋子.如何将8个皇后放在棋盘上(有8 * 8个方格),使它们谁也不能被吃掉!这就是著名的八皇后问题. 一个皇后q(x,y)能被满足以下条件的皇后q(row,col)吃掉 x=row(在纵向不能有两个皇后) y=col(横向) col + row = y+x;(斜向正方向) col - row = y-x;(斜向反方向) 八皇后问题在数据结构书上都有过说明,我们使用回溯的思想.因为每一行只能放一个皇后,所以我们递归每一行,然后循环

八皇后问题(C语言版本)

八皇后问题是一个古老而著名的问题,是回溯算法的典型例题.该问题是十九世纪著名的数学家高斯1850年提出:在8X8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行.同一列或同一斜线上,问有多少种摆法. 回溯法详解请参考链接http://baike.baidu.com/view/6056523.htm 下面的C代码可以解决N皇后问题,8皇后问题的解是92. #include <stdio.h> #include <stdlib.h> #define max

每天刷个算法题20160519:回溯法解八皇后

版权所有.所有权利保留. 欢迎转载,转载时请注明出处: http://blog.csdn.net/xiaofei_it/article/details/51502622 为了防止思维僵化,每天刷个算法题.已经刷了几天了,现在发点代码. 我已经建了一个开源项目,每天的题目都在里面: https://github.com/Xiaofei-it/Algorithms 绝大部分算法都是我自己写的,没有参考网上通用代码.读者可能会觉得有的代码晦涩难懂,因为那是我自己的理解. 最近几天都是在写一些原来的东西

Dijkstra含权图最短路径;审判,不要错过枚举退款保证不会重复;国际象棋八皇后问题

求两节点的最短通路.对于无权图,能够通过图的广度优先遍历求解.含权图一般通过Dijkstra算法求解. import java.util.ArrayList; import java.util.HashMap; import java.util.Iterator; import java.util.List; import java.util.Map; public class Shortest { static class Cell{ int node;//连接到哪个节点 int weight

[OpenJudge] 百练2754 八皇后

八皇后 Description 会下国际象棋的人都很清楚:皇后可以在横.竖.斜线上不限步数地吃掉其他棋子.如何将8个皇后放在棋盘上(有8 * 8个方格),使它们谁也不能被吃掉!这就是著名的八皇后问题. 对于某个满足要求的8皇后的摆放方法,定义一个皇后串a与之对应,即a=b1b2...b8,其中bi为相应摆法中第i行皇后所处的列数.已经知道8皇后问题一共有92组解(即92个不同的皇后串).给出一个数b,要求输出第b个串.串的比较是这样的:皇后串x置于皇后串y之前,当且仅当将x视为整数时比y小. I

python解决八皇后问题

经典回溯算法:八皇后问题 算法要求: 在国际象棋棋盘上(8*8)放置八个皇后,使得任意两个皇后之间不能在同一行,同一列,也不能位于同于对角线上. 国际象棋的棋盘如下图所示: 问共有多少种不同的方法,并且指出各种不同的放法. # -*- coding:utf-8 -*- __author__ = "tyomcat" print("******八皇后问题的解决方法******") def next_col(current, n=8): length = len(curr