十分钟入门流处理框架Flink --实时报表场景的应用

  随着业务的发展,数据量剧增,我们一些简单报表大盘类的任务,就不能简单的依赖于RDBMS了,而是依赖于数仓之类的大数据平台。

  数仓有着巨量数据的存储能力,但是一般都存在一定数据延迟,所以要想完全依赖数数仓来解决实时报表问题,是困难的。

  其实,所谓的实时报表,往简单了说就是: 对现在的一些数据进行加减乘除聚合后,得到的一串与时间相关的数字。

  所以,这类问题的关键点应该在于这个实时数据怎么来,以及怎么处理这些实时数据。

  一般地,做这类报表类工作,最基本的原则就是: 业务无侵入性,然后又要做到实时。

  所以,本能性地想到,使用消息中间件来解耦这个数据就好了,Kafka 可能是个比较好的选择。当然,这个前提是业务技术都是使用这一套东西的,如果没有,则可能想另外的招了,比如: binlog 解析?

  有了数据来源之后,我们就可以做相应的报表数据了。

  前面既然提到,报表基本上就是进行简单的加减乘除,那就是很简单了呗。

  也就是,自己起几个kafka消费者,然后消费数据,运算后,得到结果,然后存入DB中,而已。

  所以,完全可以去做这么一件事。但是你知道,凡事不会那么简单,你要处理多少异常:时间边界问题,宕机问题,业务新增问题。。。

  

  不多说了,回到本文正题:像这类场景,其实就是简单的流处理流计算而已,早已相应的开发模块被提炼出来,咱们只要学会使用就好了。

  Flink是其中做得比较好的一个框架,据说也是未来的一个趋势。既然如此,何不学他一学。

  Flink,流计算,感觉挺难啊!

  其实不然,就像前面我们提到解决方案一样,入门就是这么简单。

  好,接下来我们通过一个 flink-demo,试着入门一下!

解释:
  1. 以下demo的应用场景是: 统计1分钟类的渠道下单数量;
  2. 数据源源为kakfa;
  3. 数据输出存储为kafka和控制台;

真实的代码如下:

package com.my.flink.kafka.consumer;

import com.my.flink.config.KafkaConstantProperties;
import com.my.flink.kafka.serializer.KafkaTuple4StringSchema;
import org.apache.flink.api.java.tuple.Tuple4;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer010;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaProducer010;
import org.apache.flink.streaming.util.serialization.SimpleStringSchema;

import java.util.Properties;
import java.util.concurrent.TimeUnit;

/**
 * 用java 写消费者
 *
 */
public class ConsumeKafkaByJava {

    private static final String CONSUMER_GROUP_ID = "test.flink.consumer1";

    public static void main(String[] args) throws Exception {
        final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
//        env.enableCheckpointing(1000);

        Properties kafkaProps = new Properties();
        kafkaProps.setProperty("bootstrap.servers", KafkaConstantProperties.KAFKA_BROKER);
        kafkaProps.setProperty("group.id", CONSUMER_GROUP_ID);

        FlinkKafkaConsumer010<String> myConsumer = new FlinkKafkaConsumer010<String>(
                KafkaConstantProperties.FLINK_COMPUTE_TOPIC_IN1,
                new SimpleStringSchema(),
                kafkaProps);

        DataStream<String> dataStream = env.addSource(myConsumer);
        // 四元组数据为: 订单号,统计维度标识,订单数,订单金额
        DataStream<Tuple4<String, String, Integer, Double>> counts = dataStream
                .flatMap(new TestBizDataLineSplitter())
                .keyBy(1)
                .timeWindow(Time.of(30, TimeUnit.SECONDS))
                .reduce((value1, value2) -> {
                    return new Tuple4<>(value1.f0, value1.f1, value1.f2 + value2.f2, value1.f3 + value2.f3);
                });

        // 暂时输入与输出相同
        counts.addSink(new FlinkKafkaProducer010<>(
                KafkaConstantProperties.FLINK_DATA_SINK_TOPIC_OUT1,
                new KafkaTuple4StringSchema(),
                kafkaProps)
        );
        // 统计值多向输出
        dataStream.print();
        counts.print();
        env.execute("Test Count from Kafka data");
    }

}

  如上,就是一个 flink 的统计代码了,简单不?肯定简单!

  不过,单这个东西肯定是跑不起来的,我们还需要框架基础依赖附加模板工作,不过这些真的只是 copy 而已哦。

1. pom.xml 依赖:

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">
  <modelVersion>4.0.0</modelVersion>
  <groupId>com.my.flink</groupId>
  <artifactId>flink-kafka-test</artifactId>
  <version>1.0-SNAPSHOT</version>
  <inceptionYear>2008</inceptionYear>
  <properties>
    <scala.version>2.11.6</scala.version>
  </properties>

  <repositories>
    <repository>
      <id>scala-tools.org</id>
      <name>Scala-Tools Maven2 Repository</name>
      <url>http://scala-tools.org/repo-releases</url>
    </repository>
  </repositories>

  <pluginRepositories>
    <pluginRepository>
      <id>scala-tools.org</id>
      <name>Scala-Tools Maven2 Repository</name>
      <url>http://scala-tools.org/repo-releases</url>
    </pluginRepository>
  </pluginRepositories>

  <dependencies>
    <dependency>
      <groupId>org.scala-lang</groupId>
      <artifactId>scala-library</artifactId>
      <version>${scala.version}</version>
    </dependency>
    <dependency>
      <groupId>junit</groupId>
      <artifactId>junit</artifactId>
      <version>4.4</version>
      <scope>test</scope>
    </dependency>
    <dependency>
      <groupId>org.specs</groupId>
      <artifactId>specs</artifactId>
      <version>1.2.5</version>
      <scope>test</scope>
    </dependency>

    <dependency>
      <groupId>org.apache.flink</groupId>
      <artifactId>flink-core</artifactId>
      <version>1.3.2</version>
      <scope>compile</scope>
    </dependency>

    <!-- https://mvnrepository.com/artifact/org.apache.flink/flink-connector-kafka-0.10_2.11 -->
    <dependency>
      <groupId>org.apache.flink</groupId>
      <artifactId>flink-connector-kafka-0.10_2.11</artifactId>
      <version>1.3.2</version>
      <scope>compile</scope>
    </dependency>

    <!-- https://mvnrepository.com/artifact/org.apache.kafka/kafka_2.11 -->
    <dependency>
      <groupId>org.apache.kafka</groupId>
      <artifactId>kafka_2.11</artifactId>
      <version>0.10.2.0</version>
      <scope>compile</scope>
    </dependency>

    <dependency>
      <groupId>org.apache.kafka</groupId>
      <artifactId>kafka-clients</artifactId>
      <version>2.3.0</version>
      <scope>compile</scope>
    </dependency>

    <!-- flink-streaming的jar包,2.11为scala版本号 -->
    <dependency>
      <groupId>org.apache.flink</groupId>
      <artifactId>flink-streaming-java_2.11</artifactId>
      <version>1.3.2</version>
      <scope>compile</scope>
    </dependency>

<!--    <dependency>
      <groupId>org.apache.flink</groupId>
      <artifactId>flink-streaming-scala_2.11</artifactId>
      <version>1.3.2</version>
      <scope>compile</scope>
    </dependency>-->

    <dependency>
      <groupId>com.alibaba</groupId>
      <artifactId>fastjson</artifactId>
      <version>1.2.59</version>
    </dependency>

  </dependencies>

  <build>
    <sourceDirectory>src/main/scala</sourceDirectory>
    <testSourceDirectory>src/test/scala</testSourceDirectory>
    <plugins>
      <plugin>
        <groupId>org.apache.maven.plugins</groupId>
        <artifactId>maven-compiler-plugin</artifactId>
        <configuration>
          <source>1.8</source>
          <target>1.8</target>
        </configuration>
      </plugin>
      <plugin>
        <groupId>org.apache.maven.plugins</groupId>
        <artifactId>maven-jar-plugin</artifactId>
        <configuration>
          <archive>
            <manifest>
              <addClasspath>true</addClasspath>
              <useUniqueVersions>false</useUniqueVersions>
              <classpathPrefix>lib/</classpathPrefix>
              <mainClass>com.my.flink.kafka.consumer.ConsumeKafkaByJava</mainClass>
            </manifest>
          </archive>
        </configuration>
      </plugin>
      <plugin>
        <groupId>org.scala-tools</groupId>
        <artifactId>maven-scala-plugin</artifactId>
        <executions>
          <execution>
            <goals>
              <goal>compile</goal>
              <goal>testCompile</goal>
            </goals>
          </execution>
        </executions>
        <configuration>
          <scalaVersion>${scala.version}</scalaVersion>
          <args>
            <arg>-target:jvm-1.5</arg>
          </args>
        </configuration>
      </plugin>
      <plugin>
        <groupId>org.apache.maven.plugins</groupId>
        <artifactId>maven-eclipse-plugin</artifactId>
        <configuration>
          <downloadSources>true</downloadSources>
          <buildcommands>
            <buildcommand>ch.epfl.lamp.sdt.core.scalabuilder</buildcommand>
          </buildcommands>
          <additionalProjectnatures>
            <projectnature>ch.epfl.lamp.sdt.core.scalanature</projectnature>
          </additionalProjectnatures>
          <classpathContainers>
            <classpathContainer>org.eclipse.jdt.launching.JRE_CONTAINER</classpathContainer>
            <classpathContainer>ch.epfl.lamp.sdt.launching.SCALA_CONTAINER</classpathContainer>
          </classpathContainers>
        </configuration>
      </plugin>
      <plugin>
        <groupId>org.apache.maven.plugins</groupId>
        <artifactId>maven-assembly-plugin</artifactId>
        <version>2.4.1</version>
        <configuration>
          <!-- get all project dependencies -->
          <descriptorRefs>
            <descriptorRef>jar-with-dependencies</descriptorRef>
          </descriptorRefs>
          <!-- MainClass in mainfest make a executable jar -->
          <archive>
            <manifest>
              <mainClass>com.my.flink.kafka.consumer.ConsumeKafkaByJava</mainClass>
            </manifest>
          </archive>

        </configuration>
        <executions>
          <execution>
            <id>make-assembly</id>
            <!-- bind to the packaging phase -->
            <phase>package</phase>
            <goals>
              <goal>single</goal>
            </goals>
          </execution>
        </executions>
      </plugin>

    </plugins>
  </build>
  <reporting>
    <plugins>
      <plugin>
        <groupId>org.scala-tools</groupId>
        <artifactId>maven-scala-plugin</artifactId>
        <configuration>
          <scalaVersion>${scala.version}</scalaVersion>
        </configuration>
      </plugin>
    </plugins>
  </reporting>
</project>

2. 另外再加几个辅助类:

// 1.
package com.my.flink.config;

/**
 * kafka 相关常量定义
 *
 */
public class KafkaConstantProperties {

    /**
     * kafka broker 地址
     */
    public static final String KAFKA_BROKER = "127.0.0.1:9092";

    /**
     * zk 地址,低版本 kafka 使用,高版本已丢弃
     */
    public static final String ZOOKEEPER_HOST = "master:2181,slave1:2181,slave2:2181";

    /**
     * flink 计算使用topic 1
     */
    public static final String FLINK_COMPUTE_TOPIC_IN1 = "mastertest";

    /**
     * flink消费结果,输出到kafka, topic 数据
     */
    public static final String FLINK_DATA_SINK_TOPIC_OUT1 = "flink_compute_result_out1";

}

// 2.
package com.my.flink.kafka.formatter;

import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.java.tuple.Tuple4;
import org.apache.flink.util.Collector;

import java.math.BigDecimal;

/**
 * 原始消息参数处理类
 *
 */

public final class TestBizDataLineSplitter implements FlatMapFunction<String,
                                    Tuple4<String, String, Integer, Double>> {

    private static final long serialVersionUID = 1L;

    /**
     * 进行 map 阶段展开操作
     *
     * @param value 原始值: bizData: 2019-08-01 17:39:32,
     *              P0001,channel1,201908010116100001,100
     *
     *              dateTimeMin,
     *              productCode, channel,
     *              orderId, money
     *              [, totalCount, totalMoney]
     *
     * @param out 输出值, 用四元组保存
     *
     */
    @Override
    public void flatMap(String value, Collector<Tuple4<String, String,
                                                        Integer, Double>> out) {
        String[] tokens = value.split(",");
        String time = tokens[0].substring(0, 16);
        String uniqDimKey = time + "," + tokens[1] + "," + tokens[2];
        // totalCount: 1, totalPremium: premium
        // todo: 写成 pojo

        out.collect(new Tuple4<>(tokens[3], uniqDimKey, 1, Double.valueOf(tokens[4])));
    }

}

// 3.
package com.my.flink.kafka.serializer;

import org.apache.flink.api.common.typeinfo.TypeInformation;
import org.apache.flink.api.java.tuple.Tuple4;
import org.apache.flink.streaming.util.serialization.DeserializationSchema;
import org.apache.flink.streaming.util.serialization.SerializationSchema;

import java.nio.charset.Charset;
import java.nio.charset.StandardCharsets;

import static org.apache.flink.util.Preconditions.checkNotNull;

/**
 * kafka 自定义序列化器
 */
public class KafkaTuple4StringSchema  implements DeserializationSchema<Tuple4<String, String, Integer, Double>>, SerializationSchema<Tuple4<String, String, Integer, Double>> {

    private static final long serialVersionUID = -5784600791822349178L;

    // ------------------------------------------------------------------------
    //  Kafka Serialization
    // ------------------------------------------------------------------------

    /** The charset to use to convert between strings and bytes.
     * The field is transient because we serialize a different delegate object instead */
    private transient Charset charset;

    private String separator = ",";

    /**
     * Creates a new SimpleStringSchema that uses "UTF-8" as the encoding.
     */
    public KafkaTuple4StringSchema() {
        this(StandardCharsets.UTF_8);
    }

    /**
     * Creates a new SimpleStringSchema that uses the given charset to convert between strings and bytes.
     *
     * @param charset The charset to use to convert between strings and bytes.
     */
    public KafkaTuple4StringSchema(Charset charset) {
        this.charset = checkNotNull(charset);
    }

    @Override
    public Tuple4<String, String, Integer, Double> deserialize(byte[] message) {
        String rawData = new String(message, StandardCharsets.UTF_8);
        String[] dataArr = rawData.split(separator);
        return new Tuple4<>(dataArr[0], dataArr[1],
                            Integer.valueOf(dataArr[2]), Double.valueOf(dataArr[3]));
    }

    @Override
    public boolean isEndOfStream(Tuple4<String, String, Integer, Double> nextElement) {
        return false;
    }

    @Override
    public byte[] serialize(Tuple4<String, String, Integer, Double> element) {
        return (element.f0 + separator +
                element.f1 + separator +
                element.f2 + separator +
                element.f3).getBytes();
    }

    @Override
    public TypeInformation<Tuple4<String, String, Integer, Double>> getProducedType() {
        return null;
    }

}

  这样,加上上面的 demo, 其实就可以跑起来了。

下面我们从demo里看看 flink 的开发套路:

        // 1. 获取运行环境
        final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        // 2. 配置接入数据源
        Properties kafkaProps = new Properties();
        kafkaProps.setProperty("bootstrap.servers", KafkaConstantProperties.KAFKA_BROKER);
        kafkaProps.setProperty("group.id", CONSUMER_GROUP_ID);
        FlinkKafkaConsumer010<String> myConsumer = new FlinkKafkaConsumer010<String>(
                KafkaConstantProperties.FLINK_COMPUTE_TOPIC_IN1,
                new SimpleStringSchema(),
                kafkaProps);
        DataStream<String> dataStream = env.addSource(myConsumer);

        // 3. 处理数据
        DataStream<Tuple4<String, String, Integer, Double>> counts = dataStream
                .flatMap(new ProposalBizDataLineSplitter())
                .keyBy(1)
                .timeWindow(Time.of(30, TimeUnit.SECONDS))
                .reduce((value1, value2) -> {
                    return new Tuple4<>(value1.f0, value1.f1, value1.f2 + value2.f2, value1.f3 + value2.f3);
                });

        // 4. 输出处理结果
        counts.addSink(new FlinkKafkaProducer010<>(
                KafkaConstantProperties.FLINK_DATA_SINK_TOPIC_OUT1,
                new KafkaTuple4StringSchema(),
                kafkaProps)
        );
        // 统计值多向输出
        dataStream.print();
        counts.print();

        // 5. 正式提交运行
        env.execute("Test Count from Kafka data");
    

  其实就5个步骤,而且自己稍微想想,除了第5个步骤外,这些也都是必须的东西,再无多余了。
    1. 获取运行环境
    2. 配置接入数据源
    3. 处理数据
    4. 输出处理结果
    5. 正式提交运行

  所以,你觉得复杂吗?除了那些模板?(模板从来都是复制)

  所以,我们可以随意使用这些框架来帮我们处理事务吗?

  你还得看下公司的环境:比如 资金支持、运维支持、框架支持?

  总之,入门很简单,但不要以为真简单!(保持敬畏之心)

接下来,我们来看一下关于Flink的一些架构问题:

和大多数的大数据处理框架一样,Flink也是一种 master-slave 架构;如图:

  简单点说就是,flink 是一套自管理的运行环境,你只需按照flink范式编写代码,提交到集群运行即可。

Flink 抽象层级:

Flink 的重要特性:

  支持高吞吐、低延迟、高性能的流处理
  支持带有事件时间的窗口操作
  支持有状态计算的Exactly-once语义
  支持高度灵活的窗口操作,支持基于time、count、session,以及data-driven的窗口操作
  支持具有Backpressure功能的持续流模型
  支持基于轻量级分布式快照实现的容错
  支持批流合一处理
  Flink在JVM内部实现了自己的内存管理
  支持迭代计算
  支持程序自动优化:避免特定情况下Shuffle、排序等昂贵操作,中间结果有必要进行缓存
  支持Table-API的操作
  支持SQL式友好开发

重要概念解释:

  Watermark: 是一种衡量Event Time进展的机制,它是数据本身的一个隐藏属性;包含: eventTime / IngestionTime / processTime
  DataStream 流处理, DataSet 批处理;
  Window: TumblingWindow / SlidingWindow / SessionWindow / CountWindow
  Map: 一对一映射数据流,flatMap: 一对N数据流映射;
  Filter: 过滤返回false的数据,keyBy: 将相同key的DataStream分配到同一分区以便进行聚合计算, reduce: 将数据合并为一个新的数据;
  Sink: 输出,RichSinkFunction 实现自定义输出;基于文件的:如 writeAsText()、writeAsCsv()、writeUsingOutputFormat、FileOutputFormat。 写到socket: writeToSocket。 用于显示的:print、printToErr。 自定义Sink: addSink。connectors 用于给接入第三方数据提供接口,现在支持的connectors 包括:Apache Kafka/Apache Cassandra/Elasticsearch/Hadoop FileSystem/RabbitMQ/Apache NiFi
  SnapShot:由于 Flink 的 checkpoint 是通过分布式快照实现的,接下来我们将 snapshot 和 checkpoint 这两个词交替使用。由于 Flink checkpoint 是通过分布式 snapshot 实现的,snapshot 和 checkpoint 可以互换使用。
  Backpressure: 反压通常产生于这样的场景:短时负载高峰导致系统接收数据的速率远高于它处理数据的速率。许多日常问题都会导致反压,例如,垃圾回收停顿可能会导致流入的数据快速堆积,或者遇到大促或秒杀活动导致流量陡增。反压如果不能得到正确的处理,可能会导致资源耗尽甚至系统崩溃。

唠叨: 方向。

原文地址:https://www.cnblogs.com/yougewe/p/11371676.html

时间: 2024-10-11 02:55:01

十分钟入门流处理框架Flink --实时报表场景的应用的相关文章

十分钟入门less(翻译自:Learn lESS in 10 Minutes(or less))

十分钟入门less(翻译自:Learn lESS in 10 Minutes(or less)) 注:本文为翻译文章,因翻译水平有限,难免有缺漏不足之处,可查看原文. 我们知道写css代码是非常枯燥的,尤其是写重复颜色.样式的代码,这需要我们付出很多努力来保持css代码可维护,但是它本不应该是这样的. 很幸运地是,web开发社区已经解决了这个问题,我们在现在已经有了类似与less.sass和stylus这样的预处理器.它们有很多优于一般的css之处,如下所示: 变量---以至于我们可以在样式表中

十分钟搭建App主流框架_纯代码搭建(OC),你不知道的框架

十分钟搭建App主流框架_纯代码搭建(OC),你不知道的框架java学习爱好者 2019-06-11 14:28搭建主流框架界面 需要源码的可以私信我达成效果 效果图ps :需要源码的可以加群,668041364导读 我们玩iPhone应用的时候,有没发现大部分的应用都是上图差不多的结构,下面的TabBar控制器可以切换子控制器,上面又有Navigation导航条我们本文主要是讨论主体框架的搭建,数据暂时没有添加分析做项目的基本流程 1.搭建项目主框架(1)先搭建tabBarController

流编辑器 SED 十分钟入门全教程

这里借用一下酷壳网sed博文的图来开题,超赞的-- 1. sed 简介及原理简析 1.1 sed 简介 Sed 是什么?相信很多人都有所了解,sed 全称StreamEDitor 即流编辑器.生于1973年or 1974年by 贝尔实验室的 Lee E. McMahon(已故),是基于交互式编辑器ed("editor", 1971)的脚本功能及更早的qed(quick editor ,1965-1966)(Sed 比 awk 要大那么几岁,所以客官莫急,过几天我们再来详解 awk).S

Python十分钟入门

初试牛刀 假设你希望学习Python这门语言,却苦于找不到一个简短而全面的入门教程.那么本教程将花费十分钟的时间带你走入Python的大门.本文的内容介于教程(Toturial)和速查手册(CheatSheet)之间,因此只会包含一些基本概念.很显然,如果你希望真正学好一门语言,你还是需要亲自动手实践的.在此,我会假定你已经有了一定的编程基础,因此我会跳过大部分非Python语言的相关内容.本文将高亮显示重要的关键字,以便你可以很容易看到它们.另外需要注意的是,由于本教程篇幅有限,有很多内容我会

十分钟入门pandas数据结构和索引

pandas数据结构和索引是入门pandas必学的内容,这里就详细给大家讲解一下,看完本篇文章,相信你对pandas数据结构和索引会有一个清晰的认识. 一.数据结构介绍 在pandas中有两类非常重要的数据结构,即序列Series和数据框DataFrame.Series类似于numpy中的一维数组,除了通吃一维数组可用的函数或方法,而且其可通过索引标签的方式获取数据,还具有索引的自动对齐功能:DataFrame类似于numpy中的二维数组,同样可以通用numpy数组的函数和方法,而且还具有其他灵

Sass初学者超强十分钟入门

ruby安装 因为sass依赖于ruby环境,所以装sass之前先确认装了ruby.先导官网下载个ruby 在安装的时候,请勾选Add Ruby executables to your PATH这个选项,添加环境变量,不然以后使用编译软件的时候会提示找不到ruby环境 sass安装 安装完ruby之后,在开始菜单中,找到刚才我们安装的ruby,打开Start Command Prompt with Ruby 然后直接在命令行中输入 gem install sass 按回车键确认,等待一段时间就会

十分钟搭建App主流框架

搭建主流框架界面 0.达成效果 Snip20150904_5.png 我们玩iPhone应用的时候,有没发现大部分的应用都是上图差不多的结构,下面的TabBar控制器可以切换子控制器,上面又有Navigation导航条 我们本文主要是搭建主体的框架,数据暂时没有添加 分析做项目的基本流程 1.搭建项目主框架 (1)先搭建tabBarController(下面有一条) (2)再搭建NavigationController(上面有一条,并且每个子控制器的不一样) 2.思考开发方式 (1)storyb

Azure IoT Hub 十分钟入门系列 (3)- 使用消息路由将原始设备数据记录存档

本文主要分享一个案例: 10分钟使用消息路由将原始设备数据记录存档 B站视频讲解:https://www.bilibili.com/video/av90223893/ 本文主要有如下内容: 1.理解什么是消息路由,为什么要用消息路由 2.消息路由的类型 3.配置一个到Storage的消息路由,将原始设备消息存储到blob 4.配置一个到Storage的消息路由,当温度>30°C时,才存储下来 图文讲解: 本文参照官网:https://docs.azure.cn/zh-cn/iot-hub/tut

Azure IoT Hub 十分钟入门系列 (4)- 实现从设备上传日志文件/图片到 Azure Storage

本文主要分享一个案例: 10分钟内通过Device SDK上传文件到IoTHub B站视频:https://www.bilibili.com/video/av90224073/ 本文主要有如下内容: 1. 了解IoT Hub中文件存储在了哪里 2. 使用Node.js Device SDK 上传TXT文件 3. 在Storage中查看IOT设备上传的文件 图文内容: 本案例参考:https://docs.azure.cn/zh-cn/iot-hub/iot-hub-node-node-file-