sizeof()计算结构体的大小

简要说明:结构体成员按照定义时的顺序依次存储在连续的内存空间,但是结构体的大小并不是简单的把所有成员大小相加,而是遵循一定的规则,需要考虑到系统在存储结构体变量时的地址对齐问题。

一、没有成员的结构体占用的空间是多少个字节?

答案是:1个字节。

这就是实例化的原因(空类同样可以被实例化),每个实例在内存中都有一个独一无二的地址,为了达到这个目的,编译器往往会给一个空类或空结构体(C++中结构体也可看为类)隐含的加一个字节,这样空类或空结构体在实例化后在内存得到了独一无二的地址,所以空类所占的内存大小是1个字节。

二、首先介绍一个相关的概念——偏移量

struct stru 
         {  
                    int a;  //start address is 0
                   char b;  //start address is 4
                   int c;  //start address is 8
         };

偏移量指的是结构体变量中成员的地址和结构体变量地址的差。结构体大小等于最后一个成员的偏移量加上最后一个成员的大小。显然,结构体变量中第一个成员的地址就是结构体变量的首地址。比如上面的结构体,第一个成员a的偏移量为0。第二个成员b的偏移量是第一个成员的偏移量加上第一个成员的大小(0+4),其值为4;第三个成员c的偏移量是第二个成员的偏移量应该是加上第二个成员的大小(4+1)。

三、在实际中,存储变量时地址要求对齐,编译器在编译程序时会遵循两条原则:

(1)结构体变量中成员的偏移量必须是成员大小的整数倍(0被认为是任何数的整数倍)

(2)结构体大小必须是所有成员大小的整数倍,也即所有成员大小的公倍数。

例子1:
struct stru1  
{  
     int a;  //start address is 0
     char b;  //start address is 4
     int c;  //start address is 8
};

PS:用sizeof求该结构体的大小,发现值为12。int占4个字节,char占1个字节,结果应该是9个字节才对啊,为什么呢?这个例子中前两个成员的偏移量都满足要求,但第三个成员的偏移量为5,并不是自身(int)大小的整数倍。编译器在处理时会在第二个成员后面补上3个空字节,使得第三个成员的偏移量变成8。结构体大小等于最后一个成员的偏移量加上其大小,上面的例子中计算出来的大小为12,满足要求。

例子2:

struct stru2  
{  
      int i;  //start address is 0
      short m;  //start address is 4
};

PS:成员i的偏移量为0;成员m的偏移量为4,都不需要调整。但计算出来的大小为6,显然不是成员m大小的整数倍。因此,编译器会在成员m后面补上2个字节,使得结构体的大小变成8从而满足第二个要求。

例子3、4:

struct stru3  
{   
       char i;  //start address is 0 
       int m;   //start address is 4
       char n;  //start address is 8
};  
struct stru4  
{  
       char i;  //start address is 0
       char n;  //start address is 1
       int m;  //start address is 4
 };

虽然结构体stru3和stru4中成员都一样,但sizeof(struct stru3)的值为12而sizeof(struct stru4)的值为8。

由此可见,结构体类型需要考虑到字节对齐的情况,不同的顺序会影响结构体的大小。

四、对于嵌套的结构体,需要将其展开。对结构体求sizeof时,上述两种原则变为:
       (1)展开后的结构体的第一个成员的偏移量应当是被展开的结构体中最大的成员的整数倍。

(2)结构体大小必须是所有成员大小的整数倍,这里所有成员计算的是展开后的成员,而不是将嵌套的结构体当做一个整体。

例子1:

struct stru5  
{  
      short i;  
      struct   
      {  
           char c;  
           int j;  
      } tt;   
      int k;  
};

结构体stru5的成员tt.c的偏移量应该是4,而不是2。整个结构体大小应该是16。

例子2:

struct stru6  
{  
      char i;  
      struct   
      {  
           char c;  
           int j;  
      } tt;   
      char a;  
      char b;  
      char d;  
      char e;  
      int f;  
};

结构体tt单独计算占用空间为8,而stru6的sizeof则是20,不是8的整数倍,这说明在计算sizeof(stru6)时,将嵌套的结构体ss展开了,这样stu6中最大的成员为tt.j,占用4个字节,20为4的整数倍。如果将tt当做一个整体,结果应该是24了。

五:另一个特殊的例子是结构体中包含数组,其sizeof应当和处理嵌套结构体一样,将其展开,如下例子:

struct array  
{  
    float f;  
    char p;  
    int  arr[3];  
};

其值为20。float占4个字节,到char p时偏移量为4,p占一个字节,到int arr[3]时偏移量为5,扩展为int的整数倍,而非int arr[3]的整数倍,这样偏移量变为8,而不是12。结果是8+12=20,是最大成员float或int的大小的整数倍。

测试环境:vc++6.0

测试代码:

//#ifndef __cplusplus

//#endif

#include <iostream>
#include "stdio.h"
#include <stdlib.h>
using namespace std;

struct stru_empty
{

};
struct stru1
{
int a; //start address is 0
char b; //start address is 4
int c; //start address is 8
};
struct stru2
{
int i; //start address is 0
short m; //start address is 4
};
struct stru3
{
char i; //start address is 0
int m; //start address is 4
char n; //start address is 8
};
struct stru4
{
char i; //start address is 0
char n; //start address is 1
int m; //start address is 4
};

struct stru5
{
short i;
struct
{
char c;
int j;
} ss;
int k;
};
struct stru6
{
char i;
struct
{
char c;
int j;
} tt;
char a;
char b;
char d;
char e;
int f;
};
struct stru7
{
char i;
struct
{
char c;
//int j;
} tt;
char a;
char b;
char d;
char e;
int f;
};
struct array
{
float f;
char p;
int arr[3];
};
int main()
{
struct stru6 st6;
struct stru7 st7;
struct array ar;
printf("sizof(char)=%d \n",sizeof(char));
printf("sizof(int)=%d \n",sizeof(int));
printf("sizof(short int)=%d \n",sizeof(short int));
printf("sizof(long int)=%d \n",sizeof(long int));
printf("sizof(long)=%d \n",sizeof(long));
printf("sizof(float)=%d \n\n",sizeof(float));

printf("sizof(stru_empty)=%d \n",sizeof(stru_empty));
printf("sizof(stru1)=%d \n\n",sizeof(stru1));
printf("sizof(stru2)=%d \n\n",sizeof(stru2));
printf("sizof(stru3)=%d \n\n",sizeof(stru3));
printf("sizof(stru4)=%d \n\n",sizeof(stru4));
printf("sizof(stru5)=%d \n\n",sizeof(stru5));
printf("sizof(stru6)=%d \n",sizeof(stru6));
printf("sizof(stru6.tt)=%d \n",sizeof(st6.tt));
printf("the address of stru6.i=%d \n",&st6.i);
printf("the address of stru6.a=%d \n\n",&st6.a);

printf("sizof(stru7)=%d \n",sizeof(stru7));
printf("sizof(stru7)=%d \n",sizeof(st7.tt));
printf("the address of stru7.i=%d \n",&st7.i);
printf("the address of stru7.a=%d \n\n",&st7.a);

printf("sizof(ar)=%d \n",sizeof(ar));
printf("sizof(ar.f)=%d \n",sizeof(ar.f));
printf("sizof(ar.arr)=%d \n",sizeof(ar.arr));
return 0;
}
运行结果:

————————————————
版权声明:本文为CSDN博主「海月汐辰」的原创文章,遵循CC 4.0 by-sa版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/qq_37858386/article/details/75909852

原文地址:https://www.cnblogs.com/qiumingcheng/p/11370836.html

时间: 2024-10-08 07:18:03

sizeof()计算结构体的大小的相关文章

计算结构体的大小

typedef struct { int num:16; //指定num所占空间为16位,即2字节 }A1; typedef struct { int num:16; //3个16位,本来为6字节,补齐为8字节 int num1:16; int num2:16; }A2; typedef struct { int num:8; //1个8位,本来为1字节,补齐为4字节 }A3; typedef struct { int num:8; //3个8位,本来为3字节,补齐为4字节 int num1:8

计算结构体大小

char类型的长度被定义为一个8位字节,这很简单. short类型的长度至少为两字节.在有些计算机上,对于有些编译程序,short类型的长度可能为4字节,或者更长. int类型是一个整数的“自然”大小,其长度至少为两字节,并且至少要和short类型一样长.在16位计算机上,int类型的长度可能为两字节:在32位计算机上,可能为4字节:当64位计算机流行起来后,int类型的长度可能会达到8字节.这里说的都是“可能”,例如,早期的Motorala 68000是一种16/32位的混合型计算机,依赖于不

sizeof操作符-结构体与类大小

导读 sizeof是C/C++一个难点,当在自定义类上应用sizeof操作符时,总会出现意想不到的结果,下面,我们就来探讨一下sizeof这个操作符! 目录 1. sizeof与strlen的区别 2. sizeof作用于结构体 3. 字节对齐问题 4. sizeof作用于类 正文 1. sizeof与strlen的区别 这是老生常谈的问题了,下面举一个例子大家就明白了. char buf[] = "hello world!"; cout<<sizeof(buf)<&

关于结构体占用空间大小总结(#pragma pack的使用)

关于C/C++中结构体变量占用内存大小的问题,之前一直以为把这个问题搞清楚了,今天看到一道题,发现之前的想法完全是错误的.这道题是这样的: 在32位机器上,下面的代码中 class A { public: int i; union U { char buff[13]; int i; }u; void foo(){} typedef char* (*f)(void*); enum{red , green, blue}color; }a; sizeof(a)的值是多少?如果在代码前面加上#pragm

【2017-07-01】Linux应用开发工程师面试问题记录之二:关于结构体的大小及内存对齐问题

Tencent后台服务器开发有一道题是计算一个结构体的sizeof的大小: struct strData { int m_Int; char m_Char; short m_Short; char m_Flag; } 系统为32位的Unix机器,请问sizeof(strData)的值是多少? 在32位系统中,int类型为4个字节,char类型为1个字节,short为2个字节,所以理论上上述结构体占用的空间总共为8个字节: 但是,内存存放数据时如果各种类型合理对齐时,cpu访问数据的效率就比较高:

关于结构体占用空间大小总结

关于C/C++中结构体变量占用内存大小的问题,之前一直以为把这个问题搞清楚了,今天看到一道题,发现之前的想法完全是错误的.这道题是这样的: 在32位机器上,下面的代码中 class A { public: int i; union U { char buff[13]; int i; }u; void foo(){} typedef char* (*f)(void*); enum{red , green, blue}color; }a; sizeof(a)的值是多少?如果在代码前面加上#pragm

sizeof(结构体) = ?

关于结构体大小怎样计算的文章,我想网上一搜到处都有人总结,本人之所以在此基础上还要发表这样的文章是想用最简单的计算方法来总结前人给出的结论,以致我们在以后在对结构体相关编程中不会陷入字节对齐的陷阱中.想必想弄清楚这个问题的小伙伴都迫不及待了吧,废话不多说,下面分析过程. 首先大家应该知道有个叫默认对齐字节的概念吧,#pragma pack(n) 在代码中可以手动设置默认对齐字节的大小为n,VS编译器 n只能为(1.2.4.8.16).默认为8 ,可以通过#pragma pack(show) 来看

[C/C++标准库]_[初级]_[计算结构体成员的偏移量]

场景: 1. C结构体里计算结构体的偏移量平常看来没什么必要,但是放到插件结构的设计里就有必要了,比如只能使用偏移量访问的场景,而不能使用引用成员变量的场景. 2. 在设计一致性的接口时,公用的接口不怎么变化的,但是插件模块的结构可以不需要根据统一结构来设计,他们只需要提供偏移量给公用接口调用就行了,不同的插件 可能偏移量不一致,因为他们可以独立实现.公用接口就可以通过偏移量来访问不同的变量. 3. 可以使用stddef.h文件里的  offsetof /* Define offsetof ma

计算结构体首地址的技巧

struct ABC { int a; int b; int c; }; +----------+ <------我们需要计算的是这个地址. | a(4Byte) | +----------+ <------这个地址是已知的. | b(4Byte) | +----------+ | c(4Byte) | +----------+ 通过上图可看出,只需要把当前知道的成员变量的地址ptr,减去它在结构体当中相对偏移量(4),就得到了结构体的首地址(ptr-4). 设计一个type类型的结构体,起始