多线程(十、AQS原理-ReentrantLock实现)

ReentrantLock介绍

ReentrantLock 基于AQS实现了公平和非公平的独占锁功能。

ReentrantLock定义AQS的同步状态(synchronization state)如下:

State为0表示锁可用;为1表示被占用;为N表示锁重入的次数,是独占资源。

ReentrantLock实现公平锁原理

案例代码如下:

1、启动文件

public class Main {

    public static void main(String[] args) throws ParseException {

        ReentrantLock lock = new ReentrantLock(true);
        Thread t1 = new Thread(new Task(lock),"Thread-1");
        Thread t2 = new Thread(new Task(lock),"Thread-2");
        Thread t3 = new Thread(new Task(lock),"Thread-3");

        t1.start();
        t2.start();
        t3.start();
    }
}

2、Task

import java.util.concurrent.locks.ReentrantLock;

public class Task implements Runnable{

    private ReentrantLock lock;

    public Task(ReentrantLock lock) {
        this.lock = lock;
    }

    @Override
    public void run() {

        try {
            lock.lock();
            System.out.println(Thread.currentThread().getName() + "获取到锁....");
            Thread.sleep(2000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        } finally {
            System.out.println(Thread.currentThread().getName() + "释放锁....");
            lock.unlock();
        }
    }
}

3、执行结果:

案例分析

1、Thread-1调用lock方法

ReentrantLock内部继承AQS实现了1个抽象类Sync

继承于Sync实现了2个内部类FairSync(公平的)和NonfairSync(非公平的)

此时调用FairSync的lock方法

acquire方法来自AQS,注意参数是1

tryAcquire是ReentrantLock自己实现的,尝试获取锁

protected final boolean tryAcquire(int acquires) { //参数是1
        final Thread current = Thread.currentThread(); //当前线程
        int c = getState(); //获取当前同步状态
        if (c == 0) { //如果是0,则锁没有被占用
            //等待队列中,前面没有其他等待的线程,则用CAS的方法更新同步状态state
            if (!hasQueuedPredecessors() &&
                    compareAndSetState(0, acquires)) {
                setExclusiveOwnerThread(current); //成功的话,则设置锁的占有线程为当前线程
                return true; //返回获取资源成功
            }
        }
        //如果锁已经被占用,则判断是不是自己占用的
        else if (current == getExclusiveOwnerThread()) {
            int nextc = c + acquires;//如果是自己占用的,则是重入,增加state值,累加1
            if (nextc < 0) //重入次数过大,抛出异常
                throw new Error("Maximum lock count exceeded");
            setState(nextc); //设置state值
            return true; //重入返回ture
        }
        return false;//没有获取资源返回false
    }

Thread-1获取了锁资源,没有释放。

2、Thread-2,开始请求资源,调用lock,此时锁资源还被Thread-1占用

addWaiter方法:

private Node addWaiter(Node mode) {
        //把当前线程包装成节点,准备放入等待队列
        Node node = new Node(Thread.currentThread(), mode);
        // Try the fast path of enq; backup to full enq on failure
        //尝试直接把节点设置成队尾,否则执行enq
        Node pred = tail;
        if (pred != null) {
            node.prev = pred;//当前节点的上一个节点是之前的队尾节点
            if (compareAndSetTail(pred, node)) {
                pred.next = node;
                return node;
            }
        }
        //当前节点插入队尾
        enq(node);
        return node;
    }

enq自旋+初始化等待队列,并返回Thread-2节点

private Node enq(final Node node) {
        //采用自旋,保证节点插入
        for (;;) {
            Node t = tail;
            if (t == null) { // Must initialize 如果队列为空,则创建一个空的节点,设置为头尾节点
                if (compareAndSetHead(new Node()))
                    tail = head;
            } else {
                node.prev = t;
                if (compareAndSetTail(t, node)) { //队列不为空,追加到队尾
                    t.next = node;
                    return t;
                }
            }
        }
    }

然后对Thread-2包装节点执行acquireQueued

final boolean acquireQueued(final Node node, int arg) {
        boolean failed = true;
        try {
            boolean interrupted = false;
            for (;;) {
                //判断节点的前任节点是不是头节点,头节点是一个空节点
                final Node p = node.predecessor();
                //如果是头节点,则说明当前节点是队列里的第一个节点,首节点。
                //则尝试获取锁资源,此处因为Thread-1占用着资源,则失败
                if (p == head && tryAcquire(arg)) {
                    setHead(node);
                    p.next = null; // help GC
                    failed = false;
                    return interrupted;
                }
                //失败之后,则判断当前节点线程Thread-2是不是可以阻塞
                if (shouldParkAfterFailedAcquire(p, node) &&
                        parkAndCheckInterrupt())
                    interrupted = true;
            }
        } finally {
            if (failed)
                cancelAcquire(node);
        }
    }

是否阻塞shouldParkAfterFailedAcquire

private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
        int ws = pred.waitStatus;//前驱节点的状态
        if (ws == Node.SIGNAL) //如果是SIGNAL,则说明前驱节点状态可以唤醒后继节点,可以阻塞
            /*
             * This node has already set status asking a release
             * to signal it, so it can safely park.
             */
            return true;
        if (ws > 0) {
            /*
             * Predecessor was cancelled. Skip over predecessors and
             * indicate retry.
             */
            do {
                node.prev = pred = pred.prev; //只有CANCELLED状态大于0,则把取消状态的节点从队列删除
            } while (pred.waitStatus > 0);
            pred.next = node;
        } else {
            /*
             * waitStatus must be 0 or PROPAGATE.  Indicate that we
             * need a signal, but don‘t park yet.  Caller will need to
             * retry to make sure it cannot acquire before parking.
             */
            compareAndSetWaitStatus(pred, ws, Node.SIGNAL);//设置前驱节点为SIGNAL状态
        }
        return false;
    }

如果可以阻塞,则调用parkAndCheckInterrupt,阻塞线程,至此Thread-2进入队列,并阻塞了,耐心等待

3、Thread-3同Thread-2,略过

4、Thread-1释放锁资源

release方法:

tryRelease

然后通过unparkSuccessor,唤醒首节点,保证公平策略。

至此Thread-1释放完成,Thread-2可以获得资源,依次类推。

原文地址:https://blog.51cto.com/janephp/2408688

时间: 2024-10-16 17:27:13

多线程(十、AQS原理-ReentrantLock实现)的相关文章

多线程(十一、AQS原理-ReentrantLock的条件队列Condition)

1.Condition介绍 1.1 Condition是对线程的wait,notify的增强 1.2 在ReentrantLock中他的实现类是AQS中的ConditionObject,实现了Condition接口,利用AQS的节点,实现了条件队列. 2.案例分析 2.1 说明:Thread-1获取锁,然后await,释放锁:Thread-2获得锁,唤醒Thread-1,释放锁:Thread-1重新获取锁,释放锁. 2.2 代码 2.2.1 Thread-1 import java.util.c

AQS 原理以及 AQS 同步组件总结

1 AQS 简单介绍 AQS 的全称为(AbstractQueuedSynchronizer),这个类在 java.util.concurrent.locks 包下面. AQS 是一个用来构建锁和同步器的框架,使用 AQS 能简单且高效地构造出应用广泛的大量的同步器,比如我们提到的 ReentrantLock,Semaphore,其他的诸如 ReentrantReadWriteLock,SynchronousQueue,FutureTask 等等皆是基于 AQS 的.当然,我们自己也能利用 AQ

AQS原理分析

一,AQS原理 lock最常用的类就是ReentrantLock,其底层实现使用的是AbstractQueuedSynchronizer(AQS) 简单来说AQS会把所有的请求线程构成一个CLH队列,当一个线程执行完毕(lock.unlock())时会激活自己的后继节点,但正在执行的线程并不在队列中,而那些等待执行的线程全部处于阻塞状态,经过调查线程的显式阻塞是通过调用LockSupport.park()完成,而LockSupport.park()则调用sun.misc.Unsafe.park(

多线程断点下载原理(java代码实例演示)

其实多线程断点下载原理,很简单的,那么我们就来先了解下,如何实现多线程的断点下载,首先:你必须明白第一点,那么就是,什么是多线程下载,该知识点可以查看本博客上一篇文章,Android之多线程下载原理,断点下载呢,其实就是在这个的基础之上添加了一些东西,那么添加了什么东西了,现在来做一个详细的了解. 1.在下载的过程中,边下载,变用一个文件来记录下载的位置,也就是下载了多少的数据 1.创建文件 2.记录下载多少数据 3.存储数据 2.第二次下载的时候,就去读取文件中是否存有数据,读取上次下载的位置

多线程十大经典案例之一 双线程读写队列数据

本文配套程序下载地址为:http://download.csdn.net/detail/morewindows/5136035 转载请标明出处,原文地址:http://blog.csdn.net/morewindows/article/details/8646902 欢迎关注微博:http://weibo.com/MoreWindows 在<秒杀多线程系列>的前十五篇中介绍多线程的相关概念,多线程同步互斥问题<秒杀多线程第四篇一个经典的多线程同步问题>及解决多线程同步互斥的常用方法

秒杀多线程第十六篇 多线程十大经典案例之一 双线程读写队列数据

版权声明:本文为博主原创文章,未经博主允许不得转载. 目录(?)[+] 本文配套程序下载地址为:http://download.csdn.net/detail/morewindows/5136035 转载请标明出处,原文地址:http://blog.csdn.net/morewindows/article/details/8646902 欢迎关注微博:http://weibo.com/MoreWindows 在<秒杀多线程系列>的前十五篇中介绍多线程的相关概念,多线程同步互斥问题<秒杀多

多线程面试题系列(16):多线程十大经典案例之一 双线程读写队列数据

前十五篇中介绍多线程的相关概念,多线程同步互斥问题(第四篇)及解决多线程同步互斥的常用方法--关键段.事件.互斥量.信号量.读写锁.为了让大家更加熟练运用多线程,将会有十篇文章来讲解十个多线程使用案例,相信看完这十篇后会让你能更加游刃有余的使用多线程. 首先来看第一篇--第十六篇 多线程十大经典案例之一 双线程读写队列数据 <多线程十大经典案例之一双线程读写队列数据>案例描述: MFC对话框中一个按钮的响应函数实现两个功能:显示数据同时处理数据,因此开两个线程,一个线程显示数据(开了一个定时器

java多线程模式ThreadLocal原理简述及其使用详解

原创整理不易,转载请注明出处:java多线程模式ThreadLocal原理简述及其使用详解 代码下载地址:http://www.zuidaima.com/share/1781557457128448.htm ThreadLocal是为了使每个线程保存一份属于自己的数据. 先看一个使用ThreadLocal的实例. package com.zuidaima.aop.framework; import com.zuidaima.core.NamedThreadLocal; public abstra

java多线程断点下载原理(代码实例演示)

原文:http://www.open-open.com/lib/view/open1423214229232.html 其实多线程断点下载原理,很简单的,那么我们就来先了解下,如何实现多线程的断点下载,首先:你必须明白第一点,那么就是,什么是多线程下载,该知识点可以查看本博客上一篇文章,Android之多线程下载原理,断点下载呢,其实就是在这个的基础之上添加了一些东西,那么添加了什么东西了,现在来做一个详细的了解. 1.在下载的过程中,边下载,变用一个文件来记录下载的位置,也就是下载了多少的数据