进程: qq 要以一个整体的形式暴露给操作系统管理,里面包含对各种资源的调用,内存的管理,网络接口的调用等。。。对各种资源管理的集合 就可以成为 进程
线程: 是操作系统最小的调度单位, 是一串指令的集合(在python中同一时间执行的线程只有一个)python多线程 不适合cpu密集操作型的任务,适合io操作密集型的任务
进程 要操作cpu , 必须要先创建一个线程 ,所有在同一个进程里的线程是共享同一块内存空间的
进程与线程的区别?
1.线程共享内存空间,进程的内存是独立的
2.同一个进程的线程之间可以直接交流,两个进程想通信,必须通过一个中间代理来实现
3.创建新线程很简单, 创建新进程需要对其父进程进行一次克隆
4.一个线程可以控制和操作同一进程里的其他线程,但是进程只能操作子进程
启动线程:(主线程不等子线程)程序在退出之前默认等待所有线程执行完毕
import threading import time def run(n): print("task ",n ) time.sleep(2) print("task done",n) start_time = time.time() for i in range(50): t = threading.Thread(target=run,args=("t-%s" %i ,)) t.start() print("----------all threads has finished...") print("cost:",time.time() - start_time)
启动线程:(主线程等待子线程执行完毕)
import threading import time def run(n): print("task ",n ) time.sleep(2) print("task done",n) start_time = time.time() t_objs = [] #存线程实例 for i in range(50): t = threading.Thread(target=run,args=("t-%s" %i ,)) t.start() t_objs.append(t) #为了不阻塞后面线程的启动,不在这里join,先放到一个列表里 for t in t_objs: #循环线程实例列表,等待所有线程执行完毕 t.join() print("----------all threads has finished...") print("cost:",time.time() - start_time)
守护进程(即守护线程):以上主线程等待子线程执行完毕的过程中,虽然主线程没有等待子线程,但是在程序结束的时候默认等待所有的子线程结束。而守护进程在程序结束的时候是不需要等待守护进程执行结束的
import threading import time def run(n): print("task ",n ) time.sleep(2) print("task done",n,threading.current_thread()) start_time = time.time() for i in range(50): t = threading.Thread(target=run,args=("t-%s" %i ,)) t.setDaemon(True) #把当前线程设置为守护线程 t.start() #print("----------all threads has finished...",threading.current_thread(),threading.active_count()) print("cost:",time.time() - start_time)
线程锁(也叫互斥锁)的应用:(防止多个线程对同一份资源的处理发生冲突, 上完锁之后程序变成了串行)python3程序自己上锁了
import threading import time def run(n): lock.acquire() global num num +=1 time.sleep(1) lock.release() lock = threading.Lock() num = 0 t_objs = [] #存线程实例 for i in range(50): t = threading.Thread(target=run,args=("t-%s" %i ,)) t.start() t_objs.append(t) #为了不阻塞后面线程的启动,不在这里join,先放到一个列表里 for t in t_objs: #循环线程实例列表,等待所有线程执行完毕 t.join()print("num:",num)
递归锁的应用:(如果出现锁中有锁就需要递归锁,如果不用递归锁而把锁的顺序混淆就会出现卡死现象)
import threading def run1(): print("grab the first part data") lock.acquire() global num num += 1 lock.release() return num def run2(): print("grab the second part data") lock.acquire() global num2 num2 += 1 lock.release() return num2 def run3(): lock.acquire() res = run1() print(‘--------between run1 and run2-----‘) res2 = run2() lock.release() print(res, res2) num, num2 = 0, 0 lock = threading.RLock() for i in range(1): t = threading.Thread(target=run3) t.start() while threading.active_count() != 1: print(threading.active_count()) else: print(‘----all threads done---‘) print(num, num2)
信号量:(互斥锁 同时只允许一个线程更改数据,而Semaphore是同时允许一定数量的线程更改数据)
import threading, time def run(n): semaphore.acquire() time.sleep(1) print("run the thread: %s\n" % n) semaphore.release() if __name__ == ‘__main__‘: semaphore = threading.BoundedSemaphore(5) # 最多允许5个线程同时运行 for i in range(22): t = threading.Thread(target=run, args=(i,)) t.start() while threading.active_count() != 1: pass # print threading.active_count() else: print(‘----all threads done---‘)
Event:(来实现两个或多个线程间的交互)
import time import threading event = threading.Event() def lighter(): count = 0 event.set() #先设置绿灯 while True: if count >5 and count < 10: #改成红灯 event.clear() #把标志位清了 print("\033[41;1mred light is on....\033[0m") elif count >10: event.set() #变绿灯 count = 0 else: print("\033[42;1mgreen light is on....\033[0m") time.sleep(1) count +=1 def car(name): while True: if event.is_set(): #代表绿灯 print("[%s] running..."% name ) time.sleep(1) else: print("[%s] sees red light , waiting...." %name) event.wait() print("\033[34;1m[%s] green light is on, start going...\033[0m" %name) light = threading.Thread(target=lighter,) light.start() car1 = threading.Thread(target=car,args=("Tesla",)) car1.start()
queue队列:(作用是解耦和提高效率)
import threading,time import queue q = queue.Queue(maxsize=10) def Producer(name): count = 1 while True: q.put("骨头%s" % count) print("生产了骨头",count) count +=1 time.sleep(0.1) def Consumer(name): #while q.qsize()>0: while True: print("[%s] 取到[%s] 并且吃了它..." %(name, q.get())) time.sleep(1) p = threading.Thread(target=Producer,args=("Alex",)) c = threading.Thread(target=Consumer,args=("ChengRonghua",)) c1 = threading.Thread(target=Consumer,args=("王森",)) p.start() c.start() c1.start()
多进程:用法上和多线程一样。每个子进程都是由父进程启动的。
import multiprocessing import time def run(name): time.sleep(2) print("hello", name) if __name__ == "__main__": p = multiprocessing.Process(target=run, args=(‘bob‘, )) p.start() p.join()
父进程启动子进程:
from multiprocessing import Process import os def info(title): print(title) print(‘module name:‘, __name__) print(‘parent process:‘, os.getppid()) print(‘process id:‘, os.getpid()) print("\n\n") def f(name): info(‘\033[31;1mcalled from child process function f\033[0m‘) print(‘hello‘, name) if __name__ == ‘__main__‘: info(‘\033[32;1mmain process line\033[0m‘) p = Process(target=f, args=(‘bob‘,)) p.start() p.join()
进程间通讯(Queue):(以下这个例子中父进程的队列取到了子进程中队列的数,这其实是子进程从父进程中克隆了一份队列,然后这两个进程中的队列通过pickle进行互通)这只是实现了数据的传输
from multiprocessing import Process, Queue def f(qq): qq.put([42, None, ‘hello‘]) if __name__ == ‘__main__‘: q = Queue() p = Process(target=f, args=(q,)) p.start() print(q.get())
进程间通讯(Pipe):实现了数据的传递。
from multiprocessing import Process, Pipe def f(conn): conn.send([42, None, ‘hello from child‘]) conn.send([42, None, ‘hello from child2‘]) print("from parent:",conn.recv()) conn.close() if __name__ == ‘__main__‘: parent_conn, child_conn = Pipe() p = Process(target=f, args=(child_conn,)) p.start() print(parent_conn.recv()) # prints "[42, None, ‘hello‘]" print(parent_conn.recv()) # prints "[42, None, ‘hello‘]" parent_conn.send("张洋可好") # prints "[42, None, ‘hello‘]" p.join()
进程间通讯(Manager):实现了进程间数据的共享和传输。
from multiprocessing import Process, Manager import os def f(d, l): d[os.getpid()] =os.getpid() l.append(os.getpid()) print(l) if __name__ == ‘__main__‘: with Manager() as manager: d = manager.dict() #生成一个字典,可在多个进程间共享和传递 l = manager.list(range(5))#生成一个列表,可在多个进程间共享和传递 p_list = [] for i in range(10): p = Process(target=f, args=(d, l)) p.start() p_list.append(p) for res in p_list: #等待结果 res.join() print(d) print(l)
进程锁:虽然进程间的数据是相互独立的,但是他们在打印的时候需要占用同一块屏幕,所以需要锁来保证打印不会混乱。
from multiprocessing import Process, Lock def f(l, i): l.acquire() print(‘hello world‘, i) l.release() if __name__ == ‘__main__‘: lock = Lock() for num in range(100): Process(target=f, args=(lock, num)).start()
进程池:同一时间由多少进程在运行。以下的回调函数是主进程调用的
from multiprocessing import Process, Pool import time import os def Foo(i): time.sleep(2) print("in process",os.getpid()) return i + 100 def Bar(arg): print(‘-->exec done:‘, arg,os.getpid()) if __name__ == ‘__main__‘: pool = Pool(processes=3) #允许进程池同时放入5个进程 print("主进程",os.getpid()) for i in range(10): pool.apply_async(func=Foo, args=(i,), callback=Bar) #callback=回调 #pool.apply(func=Foo, args=(i,)) #串行 #pool.apply_async(func=Foo, args=(i,)) #并行 print(‘end‘) pool.close() pool.join() #进程池中进程执行完毕后再关闭,如果注释,那么程序直接关闭。.join()
协程:协程是一种用户态的轻量级线程。(cpu都不知道它的存在)就是在单线程中,适合高并发处理。但不能用于多核
yield实现简单的携程:
import timedef consumer(name): print("--->starting eating baozi...") while True: new_baozi = yield print("[%s] is eating baozi %s" % (name, new_baozi)) def producer(): r = con.__next__() r = con2.__next__() n = 0 while n < 5: n += 1 con.send(n) con2.send(n) time.sleep(1) print("\033[32;1m[producer]\033[0m is making baozi %s" % n) if __name__ == ‘__main__‘: con = consumer("c1") con2 = consumer("c2") p = producer()
greenlet携程:对携程进行了封装,需要手动进行切换
from greenlet import greenlet def test1(): print(12) gr2.switch() print(34) gr2.switch() def test2(): print(56) gr1.switch() print(78) gr1 = greenlet(test1) #启动一个携程 gr2 = greenlet(test2) gr1.switch()
Gevent:自动进行切换
import gevent def foo(): print(‘Running in foo‘) gevent.sleep(2) print(‘Explicit context switch to foo again‘) def bar(): print(‘Explicit精确的 context内容 to bar‘) gevent.sleep(1) print(‘Implicit context switch back to bar‘) def func3(): print("running func3 ") gevent.sleep(0) print("running func3 again ") gevent.joinall([ gevent.spawn(foo), #生成一个携程 gevent.spawn(bar), gevent.spawn(func3), ])
用携程爬取内容:
from urllib import request import gevent,time from gevent import monkey monkey.patch_all() #把当前程序的所有的io操作给我单独的做上标记 def f(url): print(‘GET: %s‘ % url) resp = request.urlopen(url) data = resp.read() print(‘%d bytes received from %s.‘ % (len(data), url)) urls = [‘https://www.python.org/‘, ‘https://www.yahoo.com/‘, ‘https://github.com/‘ ] time_start = time.time() for url in urls: f(url) print("同步cost",time.time() - time_start) async_time_start = time.time() gevent.joinall([ gevent.spawn(f, ‘https://www.python.org/‘), gevent.spawn(f, ‘https://www.yahoo.com/‘), gevent.spawn(f, ‘https://github.com/‘), ]) print("异步cost",time.time() - async_time_start)
用携程实现socket:
服务器端:
import sys import socket import time import gevent from gevent import socket, monkey monkey.patch_all() def server(port): s = socket.socket() s.bind((‘0.0.0.0‘, port)) s.listen(500) while True: cli, addr = s.accept() gevent.spawn(handle_request, cli) def handle_request(conn): try: while True: data = conn.recv(1024) print("recv:", data) conn.send(data) if not data: conn.shutdown(socket.SHUT_WR) except Exception as ex: print(ex) finally: conn.close() if __name__ == ‘__main__‘: server(8001)
客户端:
import socket HOST = ‘localhost‘ # The remote host PORT = 9999 # The same port as used by the server s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.connect((HOST, PORT)) while True: msg = bytes(input(">>:"), encoding="utf8") s.sendall(msg) data = s.recv(1024) print(‘Received‘, data) s.close()
事件驱动模型
事件驱动模型大体思路如下:
1. 有一个事件(消息)队列;
2. 鼠标按下时,往这个队列中增加一个点击事件(消息);
3. 有个循环,不断从队列取出事件,根据不同的事件,调用不同的函数,如onClick()、onKeyDown()等;
4. 事件(消息)一般都各自保存各自的处理函数指针,这样,每个消息都有独立的处理函数;
原文地址:https://www.cnblogs.com/czz0508/p/11066593.html