机器学习 - 基础知识 - 距离计算

1. 曼哈顿距离

二维平面两点a与b之间的曼哈顿距离:\[{d\mathop{{}}\nolimits_{{a-b}}={ \left| {x\mathop{{}}\nolimits_{{1}}-x\mathop{{}}\nolimits_{{2}}} \right| }+{ \left| {y\mathop{{}}\nolimits_{{1}}-y\mathop{{}}\nolimits_{{2}}} \right| }}\]

原文地址:https://www.cnblogs.com/zhongmiaozhimen/p/11597950.html

时间: 2024-10-07 05:50:46

机器学习 - 基础知识 - 距离计算的相关文章

机器学习总结(1)机器学习基础知识

机器学习分类(1)监督学习 数据集是有标签的,就是说对于给出的样本我们是知道答案的,我们大部分学到的模型都是属于这一类的,包括线性分类器.支持向量机等等: (2)无监督学习 跟监督学习相反,数据集是完全没有标签的,主要的依据是相似的样本在数据空间中一般距离是相近的,这样就能通过距离的计算把样本分类,这样就完全不需要label,比如著名的K-means算法就是无监督学习应用最广泛的算法: (3)半监督学习 半监督学习一般针对的问题是数据量超级大但是有标签数据很少或者说标签数据的获取很难很贵的情况,

机器学习基础知识整理归纳

关于机器学习的一些基本概念的整理 1.前言 1.机器学习是一门致力于研究如何通过计算的手段,利用经验来改善系统自身的性能的学科.1997年Mitchell给出一个更形式化的定义,假设用P来评估计算机程序在某任务类T上的性能,若一个程序通过利用经验E在T中任务上获得了性能改善,则我们就说关于T和P,该程序对E进行了学习. 机器学习所研究的主要内容,是关于在计算机上从数据中产生"模型"的算法,即学习算法(learning algorithm)."数据"即是现实生活中的&

机器学习基础知识之矩阵

机器学习基础概论

本文将是一篇长文,是关于机器学习相关内容的一个总体叙述,会总结之前三个例子中的一些关键问题,读完此文将对机器学习有一个更加深刻和全面的认识,那么让我们开始吧. 我们前面三篇文章分别介绍了 二分类问题.多分类问题 和 标量回归问题,这三类问题都是要将输入数据与目标结果之间建立联系.同时,这三类问题都属于监督学习的范畴,监督学习是机器学习的一个分支,还包括三个其他的主要分支:无监督学习.自监督学习 和 强化学习. 监督学习 这是目前最常见的机器学习类型,除了上面提到的分类和回归问题,还包括一些其他的

机器学习中的基础知识(入门上篇)

前面我们已经给大家讲述了很多有关机器学习的概念,这些概念都是十分重要的,我们如果要学习人工智能的话就需要重视这些知识.在这篇文章我们接着给大家介绍机器学习中的基础知识,希望这篇文章能够给大家带来帮助. (1)正则化就是对模型复杂度的惩罚.正则化帮助防止过拟合.正则化包括不同种类:L1 正则化.L2 正则化.dropout正则化. (2)正则化率就是一种标量级,用lambda来表示,指正则函数的相对重要性. (3)表征就是将数据映射到有用特征的过程. (4)根目录就是指定放置 TensorFlow

机器学习中的基础知识(深入上篇)

机器学习的知识有很多,我们在前面的文章中讲述的都是相对比较简单的知识,想必那些已经让大家头疼不已吧?在这篇文章中我们给大家介绍一下机器学习中深层次的知识.大家跟着小编学起来吧. (1)层就是神经网络中的神经元序列,可以处理输入特征序列或神经元的输出.也是 TensorFlow 的一种抽象化概念.层是将张量和配置选项作为输入.输出其他张量的 Python 函数.一旦必要的张量出现,用户就可以通过模型函数将结果转换成估计器. (2)学习率就是通过梯度下降训练模型时使用的一个标量.每次迭代中,梯度下降

机器学习概率论的一些基础知识

概率论的一些基础知识 条件概率 \(P(B|A) = \frac{1}{3}\) 表示的意思为当A发生的时候,B发生的概率 有公式 \[P(B|A) = \frac{P(AB)}{P(A)}\] \[P(AB) = P(B|A)*P(A)=P(A|B)*P(B)\] \[ P(A|B) = \frac{P(B|A)*P(A)}{P(B)}\] 全概率公式 \(B_1,B_2,B_3\)--\(B_n\) 为样本空间的S的一个划分则可以得到 \(P(A) = P(A|B_1) + P(A|B_2)

机器学习 - 距离计算

在机器学习领域里,最核心的两种数值计算分别是: 距离计算 概率计算 今天Reinhard Hsu就来看看常见都有哪些常见的的距离计算. 欧式距离(Euclidean Metric) 欧几里得距离,用于计算两个点之间的实际距离,计算方法是使用毕达哥拉斯定理,也就是咱们中国的勾股定理. 对于二维平面上的两点,它们的欧式距离可以这样算: $$ d=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2} $$ 曼哈顿距离(Manhattan distance) 想象下你站在曼哈顿街区,需要从一个十

学习算法你必须知道的一些基础知识(文末福利)

点击标题下「异步社区」可快速关注 机器学习是解决很多文本任务的基本工具,本文自然会花不少篇幅来介绍机器学习.要想搞明白什么是机器学习,一定要知道一些概率论和信息论的基本知识,本文就简单回顾一下这些知识. 1.1 概率论 概率就是描述一个事件发生的可能性.我们生活中绝大多数事件都是不确定的,每一件事情的发生都有一定的概率(确定的事件就是其概率为100%而已).天气预报说明天有雨,那么它也只是说明天下雨的概率很大.再比如掷骰子,我把一个骰子掷出去,问某一个面朝上的概率是多少?在骰子没有做任何手脚的情