Python爬虫新手教程:手机APP数据抓取 pyspider

1. 手机APP数据----写在前面

继续练习pyspider的使用,最近搜索了一些这个框架的一些使用技巧,发现文档竟然挺难理解的,不过使用起来暂时没有障碍,估摸着,要在写个5篇左右关于这个框架的教程。今天教程中增加了图片的处理,你可以重点学习一下。

2. 手机APP数据----页面分析

咱要爬取的网站是 http://www.liqucn.com/rj/new/ 这个网站我看了一下,有大概20000页,每页数据是9个,数据量大概在180000左右,可以抓取下来,后面做数据分析使用,也可以练习优化数据库。

网站基本没有反爬措施,上去爬就可以,略微控制一下并发,毕竟不要给别人服务器太大的压力。

页面经过分析之后,可以看到它是基于URL进行的分页,这就简单了,我们先通过首页获取总页码,然后批量生成所有页码即可

http://www.liqucn.com/rj/new/?page=1
http://www.liqucn.com/rj/new/?page=2
http://www.liqucn.com/rj/new/?page=3
http://www.liqucn.com/rj/new/?page=4

获取总页码的代码

class Handler(BaseHandler):
    crawl_config = {
    }

    @every(minutes=24 * 60)
    def on_start(self):
        self.crawl(‘http://www.liqucn.com/rj/new/?page=1‘, callback=self.index_page)

    @config(age=10 * 24 * 60 * 60)
    def index_page(self, response):
        # 获取最后一页的页码
        totle = int(response.doc(".current").text())
        for page in range(1,totle+1):
            self.crawl(‘http://www.liqucn.com/rj/new/?page={}‘.format(page), callback=self.detail_page)
Python资源分享qun 784758214 ,内有安装包,PDF,学习视频,这里是Python学习者的聚集地,零基础,进阶,都欢迎

然后copy一段官方中文翻译,过来,时刻提醒自己

代码简单分析:

def on_start(self) 方法是入口代码。当在web控制台点击run按钮时会执行此方法。

self.crawl(url, callback=self.index_page)这个方法是调用API生成一个新的爬取任务,
            这个任务被添加到待抓取队列。
def index_page(self, response) 这个方法获取一个Response对象。
            response.doc是pyquery对象的一个扩展方法。pyquery是一个类似于jQuery的对象选择器。

def detail_page(self, response)返回一个结果集对象。
            这个结果默认会被添加到resultdb数据库(如果启动时没有指定数据库默认调用sqlite数据库)。你也可以重写
            on_result(self,result)方法来指定保存位置。

更多知识:
@every(minutes=24*60, seconds=0) 这个设置是告诉scheduler(调度器)on_start方法每天执行一次。
@config(age=10 * 24 * 60 * 60) 这个设置告诉scheduler(调度器)这个request(请求)过期时间是10天,
    10天内再遇到这个请求直接忽略。这个参数也可以在self.crawl(url, age=10*24*60*60) 和 crawl_config中设置。
@config(priority=2) 这个是优先级设置。数字越大越先执行。

分页数据已经添加到待爬取队列中去了,下面开始分析爬取到的数据,这个在detail_page函数实现

    @config(priority=2)
    def detail_page(self, response):
        docs = response.doc(".tip_blist li").items()
        dicts = []
        for item in docs:
            title = item(".tip_list>span>a").text()
            pubdate = item(".tip_list>i:eq(0)").text()
            info = item(".tip_list>i:eq(1)").text()
            # 手机类型
            category = info.split(":")[1]
            size = info.split("/")
            if len(size) == 2:
                size = size[1]
            else:
                size = "0MB"
            app_type = item("p").text()
            mobile_type = item("h3>a").text()
            # 保存数据

            # 建立图片下载渠道

            img_url = item(".tip_list>a>img").attr("src")
            # 获取文件名字
            filename = img_url[img_url.rindex("/")+1:]
            # 添加软件logo图片下载地址
            self.crawl(img_url,callback=self.save_img,save={"filename":filename},validate_cert=False)
            dicts.append({
                "title":title,
                "pubdate":pubdate,
                "category":category,
                "size":size,
                "app_type":app_type,
                "mobile_type":mobile_type

                })
        return dicts
Python资源分享qun 784758214 ,内有安装包,PDF,学习视频,这里是Python学习者的聚集地,零基础,进阶,都欢迎

数据已经集中返回,我们重写on_result来保存数据到mongodb中,在编写以前,先把链接mongodb的相关内容编写完毕

import os

import pymongo
import pandas as pd
import numpy as np
import time
import json

DATABASE_IP = ‘127.0.0.1‘
DATABASE_PORT = 27017
DATABASE_NAME = ‘sun‘
client = pymongo.MongoClient(DATABASE_IP,DATABASE_PORT)
db = client.sun
db.authenticate("dba", "dba")
collection = db.liqu  # 准备插入数据

数据存储

    def on_result(self,result):
        if result:
            self.save_to_mongo(result)            

    def save_to_mongo(self,result):
        df = pd.DataFrame(result)
        #print(df)
        content = json.loads(df.T.to_json()).values()
        if collection.insert_many(content):
            print(‘存储到 mongondb 成功‘)

获取到的数据,如下表所示。到此为止,咱已经完成大部分的工作了,最后把图片下载完善一下,就收工啦!

3. 手机APP数据----图片存储

图片下载,其实就是保存网络图片到一个地址即可

    def save_img(self,response):
        content = response.content
        file_name = response.save["filename"]
        #创建文件夹(如果不存在)
        if not os.path.exists(DIR_PATH):
            os.makedirs(DIR_PATH) 

        file_path = DIR_PATH + "/" + file_name

        with open(file_path,"wb" ) as f:
            f.write(content)
Python资源分享qun 784758214 ,内有安装包,PDF,学习视频,这里是Python学习者的聚集地,零基础,进阶,都欢迎

到此为止,任务完成,保存之后,调整爬虫的抓取速度,点击run,数据跑起来~~~~

原文地址:https://blog.51cto.com/14445003/2422004

时间: 2024-10-31 22:21:58

Python爬虫新手教程:手机APP数据抓取 pyspider的相关文章

Python 爬虫工程师必学 App数据抓取实战

第1章 课程介绍介绍课程目标.通过课程能学习到的内容.学会这些技能能做什么,对公司业务有哪些帮助,对个人有哪些帮助.介绍目前app数据抓取有哪些困难,面临的挑战,本实战课程会利用哪些工具来解决这些问题,以及本实战课程的特点 ... 1-1 python爬虫工程师必备技能--App数据抓取实战课程导学第2章 windows下搭建开发环境介绍项目开发需要安装的开发软件,讲解了安卓模拟器对比以及夜神安卓模拟器安装.介绍.简单使用和Genymotion安卓模拟器简单分析 介绍App应用抓包工具对比以及f

Python爬虫工程师必学——App数据抓取实战

Python爬虫工程师必学 App数据抓取实战 爬虫分为几大方向,WEB网页数据抓取.APP数据抓取.软件系统数据抓取.主要讲解如何用python实现App数据抓取 数据去重又称重复数据删除,是指在一个数字文件集合中,找出重复的数据并将其删除,只保存唯一的数据单元.数据去重可以有效避免资源的浪费,所以数据去重至关重要 数据去重 数据去重可以从两个节点入手:一个是URL去重.即直接筛选掉重复的URL:另一个是数据库去重.即利用数据库的一些特性筛选重复的数据. def process_spider_

Python爬虫入门教程 29-100 手机APP数据抓取 pyspider

1. 手机APP数据----写在前面 继续练习pyspider的使用,最近搜索了一些这个框架的一些使用技巧,发现文档竟然挺难理解的,不过使用起来暂时没有障碍,估摸着,要在写个5篇左右关于这个框架的教程.今天教程中增加了图片的处理,你可以重点学习一下. 2. 手机APP数据----页面分析 咱要爬取的网站是 http://www.liqucn.com/rj/new/ 这个网站我看了一下,有大概20000页,每页数据是9个,数据量大概在180000左右,可以抓取下来,后面做数据分析使用,也可以练习优

Python爬虫入门教程 17-100 博客抓取数据

写在前面 写了一段时间的博客了,忽然间忘记了,其实博客频道的博客也是可以抓取的,所以我干了..... 其实这事情挺简单的,打开CSDN博客首页,他不是有个最新文章么,这个里面都是最新发布的文章. 打开F12抓取一下数据API,很容易就获取到了他的接口 提取链接长成这个样子 https://blog.csdn.net/api/articles?type=more&category=newarticles&shown_offset=1540381234000000 发现博客最新文章是一个瀑布流

Python爬虫入门教程 48-100 使用mitmdump抓取手机惠农APP-手机APP爬虫部分

1. 爬取前的分析 mitmdump是mitmproxy的命令行接口,比Fiddler.Charles等工具方便的地方是它可以对接Python脚本. 有了它我们可以不用手动截获和分析HTTP请求和响应,只需写好请求和响应的处理逻辑即可. 它还可以实现数据的解析.存储等工作,这些过程都可以通过Python实现. 1.1 启动mitmdump 保存到文件 使用命令 mitmdump -w crawl.txt 其中 crawl.txt 可以为任意文件名,就可以保存相应的结果了 1.2 调用脚本文件 m

python爬虫----(6. scrapy框架,抓取亚马逊数据)

利用xpath()分析抓取数据还是比较简单的,只是网址的跳转和递归等比较麻烦.耽误了好久,还是豆瓣好呀,URL那么的规范.唉,亚马逊URL乱七八糟的.... 可能对url理解还不够. amazon ├── amazon │   ├── __init__.py │   ├── __init__.pyc │   ├── items.py │   ├── items.pyc │   ├── msic │   │   ├── __init__.py │   │   └── pad_urls.py │  

Python爬虫新手教程:爬取了6574篇文章,告诉你产品经理在看什么!

作为互联网界的两个对立的物种,产品汪与程序猿似乎就像一对天生的死对头:但是在产品开发链条上紧密合作的双方,只有通力合作,才能更好地推动项目发展.那么产品经理平日里面都在看那些文章呢?我们程序猿该如何投其所好呢?我爬取了人人都是产品经理栏目下的所有文章,看看产品经理都喜欢看什么. 1. 分析背景 1.1. 为什么选择「人人都是产品经理」 人人都是产品经理是以产品经理.运营为核心的学习.交流.分享平台,集媒体.培训.招聘.社群为一体,全方位服务产品人和运营人,成立8年举办在线讲座500+期,线下分享

Python爬虫新手教程: 知乎文章图片爬取器

1. 知乎文章图片爬取器之二博客背景 昨天写了知乎文章图片爬取器的一部分代码,针对知乎问题的答案json进行了数据抓取,博客中出现了部分写死的内容,今天把那部分信息调整完毕,并且将图片下载完善到代码中去. 首先,需要获取任意知乎的问题,只需要你输入问题的ID,就可以获取相关的页面信息,比如最重要的合计有多少人回答问题.问题ID为如下标红数字 编写代码,下面的代码用来检测用户输入的是否是正确的ID,并且通过拼接URL去获取该问题下面合计有多少答案. import requests import r

第四章爬虫进阶之动态网页数据抓取

动态网页数据抓取 什么是AJAX: AJAX(Asynchronouse JavaScript And XML)异步JavaScript和XML.过在后台与服务器进行少量数据交换,Ajax 可以使网页实现异步更新.这意味着可以在不重新加载整个网页的情况下,对网页的某部分进行更新.传统的网页(不使用Ajax)如果需要更新内容,必须重载整个网页页面.因为传统的在传输数据格式方面,使用的是XML语法.因此叫做AJAX,其实现在数据交互基本上都是使用JSON.使用AJAX加载的数据,即使使用了JS,将数