Java分布式ID生成解决方案

分布式ID生成器

我们采用的是开源的twitter(  非官方中文惯称:推特.是国外的一个网站,是一个社交网络及微博客服务)  的snowflake算法(推特雪花算法)。

封装为工具类,源码如下:

package util;

import java.lang.management.ManagementFactory;
import java.net.InetAddress;
import java.net.NetworkInterface;

/**
 * <p>名称:IdWorker.java</p>
 * <p>描述:分布式自增长ID</p>
 * <pre>
 *     Twitter的 Snowflake JAVA实现方案
 * </pre>
 * 核心代码为其IdWorker这个类实现,其原理结构如下,我分别用一个0表示一位,用—分割开部分的作用:
 * 1||0---0000000000 0000000000 0000000000 0000000000 0 --- 00000 ---00000 ---000000000000
 * 在上面的字符串中,第一位为未使用(实际上也可作为long的符号位),接下来的41位为毫秒级时间,
 * 然后5位datacenter标识位,5位机器ID(并不算标识符,实际是为线程标识),
 * 然后12位该毫秒内的当前毫秒内的计数,加起来刚好64位,为一个Long型。
 * 这样的好处是,整体上按照时间自增排序,并且整个分布式系统内不会产生ID碰撞(由datacenter和机器ID作区分),
 * 并且效率较高,经测试,snowflake每秒能够产生26万ID左右,完全满足需要。
 * <p>
 * 64位ID (42(毫秒)+5(机器ID)+5(业务编码)+12(重复累加))
 *
 * @author Polim
 */
public class IdWorker {
    // 时间起始标记点,作为基准,一般取系统的最近时间(一旦确定不能变动)
    private final static long twepoch = 1288834974657L;
    // 机器标识位数
    private final static long workerIdBits = 5L;
    // 数据中心标识位数
    private final static long datacenterIdBits = 5L;
    // 机器ID最大值
    private final static long maxWorkerId = -1L ^ (-1L << workerIdBits);
    // 数据中心ID最大值
    private final static long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);
    // 毫秒内自增位
    private final static long sequenceBits = 12L;
    // 机器ID偏左移12位
    private final static long workerIdShift = sequenceBits;
    // 数据中心ID左移17位
    private final static long datacenterIdShift = sequenceBits + workerIdBits;
    // 时间毫秒左移22位
    private final static long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;

    private final static long sequenceMask = -1L ^ (-1L << sequenceBits);
    /* 上次生产id时间戳 */
    private static long lastTimestamp = -1L;
    // 0,并发控制
    private long sequence = 0L;

    private final long workerId;
    // 数据标识id部分
    private final long datacenterId;

    public IdWorker(){
        this.datacenterId = getDatacenterId(maxDatacenterId);
        this.workerId = getMaxWorkerId(datacenterId, maxWorkerId);
    }
    /**
     * @param workerId
     *            工作机器ID
     * @param datacenterId
     *            序列号
     */
    public IdWorker(long workerId, long datacenterId) {
        if (workerId > maxWorkerId || workerId < 0) {
            throw new IllegalArgumentException(String.format("worker Id can‘t be greater than %d or less than 0", maxWorkerId));
        }
        if (datacenterId > maxDatacenterId || datacenterId < 0) {
            throw new IllegalArgumentException(String.format("datacenter Id can‘t be greater than %d or less than 0", maxDatacenterId));
        }
        this.workerId = workerId;
        this.datacenterId = datacenterId;
    }
    /**
     * 获取下一个ID
     *
     * @return
     */
    public synchronized long nextId() {
        long timestamp = timeGen();
        if (timestamp < lastTimestamp) {
            throw new RuntimeException(String.format("Clock moved backwards.  Refusing to generate id for %d milliseconds", lastTimestamp - timestamp));
        }

        if (lastTimestamp == timestamp) {
            // 当前毫秒内,则+1
            sequence = (sequence + 1) & sequenceMask;
            if (sequence == 0) {
                // 当前毫秒内计数满了,则等待下一秒
                timestamp = tilNextMillis(lastTimestamp);
            }
        } else {
            sequence = 0L;
        }
        lastTimestamp = timestamp;
        // ID偏移组合生成最终的ID,并返回ID
        long nextId = ((timestamp - twepoch) << timestampLeftShift)
                | (datacenterId << datacenterIdShift)
                | (workerId << workerIdShift) | sequence;

        return nextId;
    }

    private long tilNextMillis(final long lastTimestamp) {
        long timestamp = this.timeGen();
        while (timestamp <= lastTimestamp) {
            timestamp = this.timeGen();
        }
        return timestamp;
    }

    private long timeGen() {
        return System.currentTimeMillis();
    }

    /**
     * <p>
     * 获取 maxWorkerId
     * </p>
     */
    protected static long getMaxWorkerId(long datacenterId, long maxWorkerId) {
        StringBuffer mpid = new StringBuffer();
        mpid.append(datacenterId);
        String name = ManagementFactory.getRuntimeMXBean().getName();
        if (!name.isEmpty()) {
         /*
          * GET jvmPid
          */
            mpid.append(name.split("@")[0]);
        }
      /*
       * MAC + PID 的 hashcode 获取16个低位
       */
        return (mpid.toString().hashCode() & 0xffff) % (maxWorkerId + 1);
    }

    /**
     * <p>
     * 数据标识id部分
     * </p>
     */
    protected static long getDatacenterId(long maxDatacenterId) {
        long id = 0L;
        try {
            InetAddress ip = InetAddress.getLocalHost();
            NetworkInterface network = NetworkInterface.getByInetAddress(ip);
            if (network == null) {
                id = 1L;
            } else {
                byte[] mac = network.getHardwareAddress();
                id = ((0x000000FF & (long) mac[mac.length - 1])
                        | (0x0000FF00 & (((long) mac[mac.length - 2]) << 8))) >> 6;
                id = id % (maxDatacenterId + 1);
            }
        } catch (Exception e) {
            System.out.println(" getDatacenterId: " + e.getMessage());
        }
        return id;
    }

    /**
    * 测试
    */
    public static void main(String[] args) {
        IdWorker idWorker=new IdWorker(0,0);

        for(int i=0; i<100;i++) {
            long nextId = idWorker.nextId();
            System.out.println(nextId);
        }
    }

}

原文地址:https://www.cnblogs.com/hxun/p/11451629.html

时间: 2024-10-08 13:16:50

Java分布式ID生成解决方案的相关文章

我爱java系列之---【分布式ID生成解决方案:UUID、Redis生成id、snowflake】

唯一id生成方案: a. 使用UUID生成唯一主键: 优点: 全局唯一. 缺点: 因为生成的内容是字符串, 不能排序, 不能按照时间先后排序,因为生成的是字符串类型的id, 可读性差. b. 使用redis来生成全局唯一主键: 优点: redis是内存操作, 速度快, 生成的是数字, 可读性好, 并且可以按照生成的时间先后排序. 缺点: 如果整个系统没有用到redis技术, 那么这里使用redis会增加系统的技术复杂度.   应用服务器到redis服务器获取唯一id, 增加网络io. c. sn

分布式ID生成方案

分布式ID生成方案(分布式数据库) 背景:在互联网应用中,应用需要为每一个用户分配一个id,在使用分布式数据库情况下,已经不能依靠自增主键来生成唯一性id了... 根据特定算法生成唯一ID 可重现的id生成方案:使用用户提供的特定的数据源(登录凭证),通过某种算法生成id,这个过程是可重现的,只要用户提供的数据源是唯一的,那么生成的id也是唯一的. 例如通过用户注册的email+salt,使用摘要算法(md5/sha)生成128bit的数据,然后通过混合因子转变为一个long类型的数据是64bi

理解分布式id生成算法SnowFlake

理解分布式id生成算法SnowFlake https://segmentfault.com/a/1190000011282426#articleHeader2 分布式id生成算法的有很多种,Twitter的SnowFlake就是其中经典的一种. 概述 SnowFlake算法生成id的结果是一个64bit大小的整数,它的结构如下图: 图片描述 1位,不用.二进制中最高位为1的都是负数,但是我们生成的id一般都使用整数,所以这个最高位固定是0 41位,用来记录时间戳(毫秒). 41位可以表示241?

图解分布式id生成算法SnowFlake

分布式id生成算法的有很多种,Twitter的SnowFlake就是其中经典的一种. 概述 SnowFlake算法生成id的结果是一个64bit大小的整数,它的结构如下图: 1位,不用.二进制中最高位为1的都是负数,但是我们生成的id一般都使用整数,所以这个最高位固定是0 41位,用来记录时间戳(毫秒). 41位可以表示241?1个数字, 如果只用来表示正整数(计算机中正数包含0),可以表示的数值范围是:0 至 241?1,减1是因为可表示的数值范围是从0开始算的,而不是1. 也就是说41位可以

搞懂分布式技术12:分布式ID生成方案

搞懂分布式技术12:分布式ID生成方案 ## 转自: 58沈剑 架构师之路 2017-06-25 一.需求缘起 几乎所有的业务系统,都有生成一个唯一记录标识的需求,例如: 消息标识:message-id 订单标识:order-id 帖子标识:tiezi-id 这个记录标识往往就是数据库中的主键,数据库上会建立聚集索引(cluster index),即在物理存储上以这个字段排序. 这个记录标识上的查询,往往又有分页或者排序的业务需求,例如: 拉取最新的一页消息 select message-id/

分布式ID生成策略 &middot; fossi

分布式环境下如何保证ID的不重复呢?一般我们可能会想到用UUID来实现嘛.但是UUID一般可以获取当前时间的毫秒数再加点随机数,但是在高并发下仍然可能重复.最重要的是,如果我要用这种UUID来生成分表的唯一ID的话,重复不谈,这种随机的字符串对于我们的innodb存储引擎的插入效率是很低的.所以我们生成的ID如果作为主键,最好有两种特性:分布式唯一和有序. 唯一性就不用说了,有序保证了对索引字段的插入的高效性.我们来具体看看ShardingJDBC的分布式ID生成策略是如何保证. snowfla

9种分布式ID生成之 美团(Leaf)实战

整理了一些Java方面的架构.面试资料(微服务.集群.分布式.中间件等),有需要的小伙伴可以关注公众号[程序员内点事],无套路自行领取 更多优选 一口气说出 9种 分布式ID生成方式,面试官有点懵了 面试总被问分库分表怎么办?你可以这样怼他 3万字总结,Mysql优化之精髓 为了不复制粘贴,我被逼着学会了JAVA爬虫 技术部突然宣布:JAVA开发人员全部要会接口自动化测试框架 Redis 5种数据结构及对应使用场景,全会面试要加分的 引言 前几天写过一篇<一口气说出 9种 分布式ID生成方式,面

一种基于Orleans的分布式Id生成方案

基于Orleans的分布式Id生成方案,因Orleans的单实例.单线程模型,让这种实现变的简单,贴出一种实现,欢迎大家提出意见 public interface ISequenceNoGenerator : Orleans.IGrainWithIntegerKey { Task<Immutable<string>> GetNext(); } public class SequenceNoGenerator : Orleans.Grain, ISequenceNoGenerator

【转载】细聊分布式ID生成方法

一.需求缘起 几乎所有的业务系统,都有生成一个记录标识的需求,例如: (1)消息标识:message-id (2)订单标识:order-id (3)帖子标识:tiezi-id 这个记录标识往往就是数据库中的唯一主键,数据库上会建立聚集索引(cluster index),即在物理存储上以这个字段排序. 这个记录标识上的查询,往往又有分页或者排序的业务需求,例如: (1)拉取最新的一页消息:selectmessage-id/ order by time/ limit 100 (2)拉取最新的一页订单