泡泡一分钟:Learning Motion Planning Policies in Uncertain Environments through Repeated Task Executions

张宁  Learning Motion Planning Policies in Uncertain Environments through Repeated Task Executions

通过重复任务执行学习不确定环境中的运动规划策略
链接:https://pan.baidu.com/s/1TlSJn0fXuKEwZ9vts4xA6g
提取码:jwsd
复制这段内容后打开百度网盘手机App,操作更方便哦

Florence Tsang, Ryan A. Macdonald, and Stephen L. Smith

The ability to navigate uncertain environments from a start to a goal location is a necessity in many applications. While there are many reactive algorithms for online replanning, there has not been much investigation in leveraging past executions of the same navigation task to improve future executions. In this work, we ?rst formalize this problem by introducing the Learned Reactive Planning Problem (LRPP). Second, we propose a method to capture these past executions and from that determine a motion policy to handle obstacles that the robot has seen before. Third, we show from our experiments that using this policy can signi?cantly reduce the execution cost over just using reactive algorithms.

在许多应用中,从开始到目标位置导航不确定环境的能力是必需的。尽管有许多用于在线重新计划的反应算法,但是在利用相同导航任务的过去执行来改进将来的执行方面没有太多调查。在这项工作中,我们首先通过引入学习反应规划问题(LRPP)来正式化这个问题。 其次,我们提出了一种方法来捕获这些过去的执行,并从中确定一个运动策略来处理机器人以前看到的障碍。 第三,我们从实验中可以看出,使用这种策略可以显着降低执行成本,而不仅仅是使用反应算法。

原文地址:https://www.cnblogs.com/feifanrensheng/p/11519225.html

时间: 2024-10-16 14:27:31

泡泡一分钟:Learning Motion Planning Policies in Uncertain Environments through Repeated Task Executions的相关文章

泡泡一分钟:Motion Planning for a Small Aerobatic Fixed-Wing Unmanned Aerial Vehicle

Motion Planning for a Small Aerobatic Fixed-Wing Unmanned Aerial Vehicle Joshua Levin, Aditya Paranjape, and Meyer Nahon 小型特技飞行无人机的运动规划 https://pan.baidu.com/s/1xB6WxNMEo-SNAApsNT0GQQ Abstract- A motion planner is developed for guiding a small aeroba

UPenn - Robotics 2:Computational Motion Planning - week 1:Introduction and Graph-based Plan Methods

          If you are really interested in the topic of computational motion planning in robotics, here are some related texts: Robot Motion Planning, Jean-Claude Latombe, Kluwer Academic Publishers, 1991. Principles of Robot Motion, H. Choset, K. M.

Grassfire算法- 运动规划(Motion planning)

我们的目标是:找到start-end之间的最短路径,如图所示.刷过leetcode的朋友看见这张应该会会心一笑,BFS,DFS这类词争先恐后往外跳.但是呢,太高级了,我的朋友们.让我们先用一种最文艺(傻气)的办法,来解决这个问题. Grassfire 算法.小时候,大家都背过一首诗:离离原上草,一岁一枯荣. 野火烧不尽,春风吹又生.说的就是这种算法.这首诗告诉我们,草,都是从旁边的草开始燃烧蔓延的!grassfire-烧草,就这么简单又有力. 参考:1)运动规划(Motion planning)

Matterport3D: Learning from RGB-D Data in Indoor Environments

Abstract Access to large, diverse RGB-D datasets is critical for training RGB-D scene understanding algorithms. However, existing datasets still cover only a limited number of views or a restricted scale of spaces. In this paper, we introduce Matterp

运动规划 (Motion Planning): MoveIt! 与 OMPL

原创博文:转载请标明出处:http://www.cnblogs.com/zxouxuewei 最近有不少人询问有关MoveIt!与OMPL相关的话题,但是大部分问题都集中于XXX功能怎么实现,XXX错误怎么解决.表面上看,解决这些问题的方法就是提供正确的代码,正确的编译方法,正确的运行步骤. 然而,这种解决方法只能解决这个特定的问题,而且解决之后我们也无法学到一些实际的东西.要想彻底明白,需要从源头入手,也就是说,不要问"MoveIt! 怎么把机械手从空间一个点移到另一个点?",而是要

UPenn - Robotics 2:Computational Motion Planning - week 4: Artificial Potential Field Methods

The basic idea here is to try to construct a smooth function over the extent of the configuration space, which has high values when the robot is near to an obstacle and lower values when it's further away. If we can construct such a function, we can

泡泡一分钟:Project AutoVision - Localization and 3D Scene Perception for an Autonomous Vehicle with a Multi-Camera System

Project AutoVision - Localization and 3D Scene Perception for an Autonomous Vehicle with a Multi-Camera System https://arxiv.org/abs/1809.05477 Abstract: Project AutoVision aims to develop localization and 3D scene perception capabilities for a self-

泡泡一分钟:GEN-SLAM - Generative Modeling for Monocular Simultaneous Localization and Mapping

张宁  GEN-SLAM - Generative Modeling for Monocular Simultaneous Localization and Mappinghttps://arxiv.org/abs/1902.02086 Punarjay Chakravarty, Praveen Narayanan and Tom Roussel Abstract—We present a Deep Learning based system for the twin tasks of loca

泡泡一分钟:Geometric and Physical Constraints for Drone-Based Head Plane Crowd Density Estimation

张宁 Geometric and Physical Constraints for Drone-Based Head Plane Crowd Density Estimation 基于无人机的向下平面人群密度估计的几何和物理约束https://arxiv.org/abs/1803.08805 Weizhe Liu, Krzysztof Lis, Mathieu Salzmann, Pascal Fua Abstract—State-of-the-art methods for counting