BZOJ 2588 Count on a tree 主席树+倍增LCA

题目大意:给定一棵树,每个节点有权值,询问两个节点路径上的权值第k小

这题很卡时间。。。

树链剖分+二分+树套树的O(nlog^4n)做法可以去死了

没有修改操作,树链剖分+二分+划分树O(nlog^3n),还是死了

我怒了,裸学了一发可持久化线段树(不看任何代码OTZ,我是怎么做到的0.0),二分+主席树,O(nlog^2n),居然还是死了!

最后发现我SB了,完全没有必要二分,直接把4个参全传下去就行了,O(nlogn)

首先我们对于每个节点维护这个节点到根的权值线段树 然后对于每个询问(x,y),这条路径上的线段树就是tree[x]+tree[y]-tree[lca(x,y)]-tree[fa[lca(x,y)]]

把四个节点全都传参,然后当作普通权值线段树做正常求第k小就行了

时间复杂度O(nlogn)

最后一个回车不能输出,否则会PE。。。坑爹啊,难怪这题PE的数量占了AC的2/3。。。

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define M 100100
using namespace std;
struct Tree{
	Tree *ls,*rs;
	int num;
	Tree(Tree*_,Tree*__,int ___):ls(_),rs(__),num(___){}
}*tree[M];
Tree* Build_Tree(Tree *p,int x,int y,int z)
{
	int mid=x+y>>1;
	if(x==y)
		return new Tree(tree[0],tree[0],p->num+1);
	if(z<=mid)
		return new Tree(Build_Tree(p->ls,x,mid,z),p->rs,p->num+1);
	else
		return new Tree(p->ls,Build_Tree(p->rs,mid+1,y,z),p->num+1);
}
int Get_Ans(Tree *p1,Tree *p2,Tree *p3,Tree *p4,int x,int y,int k)
{
	int mid=x+y>>1;
	if(x==y)
		return mid;
	int temp = p1->ls->num + p2->ls->num - p3->ls->num - p4->ls->num ;
	if(k<=temp) return Get_Ans( p1->ls , p2->ls , p3->ls , p4->ls , x , mid , k );
	else return Get_Ans( p1->rs , p2->rs , p3->rs , p4->rs , mid+1 , y , k-temp );
}
struct abcd{
	int to,next;
}table[M<<1];
int head[M],tot;
int n,m,ans;
int a[M],fa[M][20],dpt[M];
pair<int,int>b[M];
void Add(int x,int y)
{
	table[++tot].to=y;
	table[tot].next=head[x];
	head[x]=tot;
}
void DFS(int x)
{
	int i;
	dpt[x]=dpt[fa[x][0]]+1;
	tree[x]=Build_Tree(tree[fa[x][0]],1,n,a[x]);
	for(i=head[x];i;i=table[i].next)
	{
		if(table[i].to==fa[x][0])
			continue;
		fa[table[i].to][0]=x;
		DFS(table[i].to);
	}
}
int LCA(int x,int y)
{
	int j;
	if(dpt[x]<dpt[y])
		swap(x,y);
	for(j=19;~j;j--)
		if(dpt[fa[x][j]]>=dpt[y])
			x=fa[x][j];
	if(x==y)
		return x;
	for(j=19;~j;j--)
		if(fa[x][j]!=fa[y][j])
			x=fa[x][j],y=fa[y][j];
	return fa[x][0];
}
int Query(int x,int y,int k)
{
	int lca=LCA(x,y);
	return Get_Ans( tree[x] , tree[y] , tree[lca] , tree[fa[lca][0]] , 1 , n , k );
}
int main()
{

	//freopen("count.in","r",stdin);
	//freopen("count.out","w",stdout);

	int i,j,x,y,k;
	cin>>n>>m;
	for(i=1;i<=n;i++)
	{
		scanf("%d",&b[i].first);
		b[i].second=i;
	}
	sort(b+1,b+n+1);
	for(i=1;i<=n;i++)
		a[b[i].second]=i;
	for(i=1;i<n;i++)
	{
		scanf("%d%d",&x,&y);
		Add(x,y);
		Add(y,x);
	}
	tree[0]=new Tree(0x0,0x0,0);
	tree[0]->ls=tree[0]->rs=tree[0];
	DFS(1);
	for(j=1;j<=19;j++)
		for(i=1;i<=n;i++)
			fa[i][j]=fa[ fa[i][j-1] ][j-1];
	for(i=1;i<=m;i++)
	{
		scanf("%d%d%d",&x,&y,&k);
		printf("%d",ans=b[Query(x^ans,y,k)].first);
		if(i!=m)
			puts("");
	}
}

附送我TLE了的树链剖分+划分树。。。

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define M 100100
using namespace std;
inline int getc() {
    static const int L = 1 << 15;
    static char buf[L], *S = buf, *T = buf;
    if (S == T) {
        T = (S = buf) + fread(buf, 1, L, stdin);
        if (S == T)
            return EOF;
    }
    return *S++;
}
inline int getint() {
    int c;
    while(!isdigit(c = getc()) && c != '-');
    bool sign = c == '-';
    int tmp = sign ? 0 : c - '0';
    while(isdigit(c = getc()))
        tmp = (tmp << 1) + (tmp << 3) + c - '0';
    return sign ? -tmp : tmp;
}
inline void output(int x)
{
    static int a[20];
    if (x == 0)
        putchar('0');
    else {
        int top = 0;
        if (x < 0)
            putchar('-'), x=-x;
        while(x) {
            a[++top] = x % 10;
            x /= 10;
        }
        for(int i = top; i >= 1; --i)
            putchar('0' + a[i]);
    }
}
struct abcd{
    int to,next;
}table[M<<1];
int head[M],tot;
int n,m,ans,maxnum;
int f[M],fa[M],son[M],dpt[M],siz[M],top[M],pos[M],a[M],b[M],c[M],s[20][M],cnt;
inline void add(int x,int y)
{
    table[++tot].to=y;
    table[tot].next=head[x];
    head[x]=tot;
}
void bfs()
{
    static int q[M],r=0,h=0;
    int i,x;
    q[++r]=1;
    while(r!=h)
    {
        x=q[++h];
        dpt[x]=dpt[fa[x]]+1;
        siz[x]=1;
        for(i=head[x];i;i=table[i].next)
        {
            if(table[i].to==fa[x])
                continue;
            fa[table[i].to]=x;
            q[++r]=table[i].to;
        }
    }
    for(i=n;i;i--)
    {
        x=q[i];
        siz[fa[x]]+=siz[x];
        if(siz[x]>siz[son[fa[x]]])
            son[fa[x]]=x;
    }
    for(i=1;i<=n;i++)
    {
        x=q[i];
        if(son[fa[x]]==x)
            top[x]=top[fa[x]];
        else
        {
            top[x]=x;
            for(;x;x=son[x])
                pos[x]=++cnt,a[pos[x]]=f[x];
        }
    }
}
void Build_Tree(int l,int r,int dpt)
{
    if(l==r)
        return ;
    int i,mid=l+r>>1;
    int l1=l,l2=mid+1;
    int left=mid-l+1;
    for(i=l;i<=r;i++)
        left-=(a[i]<c[mid]);
    for(i=l;i<=r;i++)
    {
        if(a[i]<c[mid]||a[i]==c[mid]&&left)
            b[l1++]=a[i],s[dpt][i]=(i==l?1:s[dpt][i-1]+1),left-=(a[i]==c[mid]);
        else
            b[l2++]=a[i],s[dpt][i]=(i==l?0:s[dpt][i-1]);
    }
    memcpy( a+l , b+l , sizeof(a[0])*(r-l+1) );
    Build_Tree(l,mid,dpt+1);
    Build_Tree(mid+1,r,dpt+1);
}
int Get_Ans(int l,int r,int dpt,int x,int y,int val)
{
    int mid=l+r>>1;
    int l1=(x==l?0:s[dpt][x-1]),l2=s[dpt][y];
    if(x>y)
        return 0;
    if(l==r)
        return c[mid]<=val;
    if(val<c[mid])
        return Get_Ans(l,mid,dpt+1,l+l1,l+l2-1,val);
    else
        return l2-l1+Get_Ans(mid+1,r,dpt+1,(mid+1)+(x-l-l1),(mid+1)+(y-l+1-l2)-1,val);
}
bool Query(int x,int y,int val,int k)
{
    int re=0,fx=top[x],fy=top[y];
    while(fx!=fy)
    {
        if(dpt[fx]<dpt[fy])
            swap(x,y),swap(fx,fy);
        re+=Get_Ans(1,n,0,pos[fx],pos[x],val);
        if(re>=k)
            return true;
        x=fa[fx];fx=top[x];
    }
    if(dpt[x]<dpt[y])
        swap(x,y);
    re+=Get_Ans(1,n,0,pos[y],pos[x],val);
    if(re>=k)
        return true;
    return false;
}
inline int Divide(int x,int y,int k)
{
    int l=0,r=maxnum;
    while(l+1!=r)
    {
        int mid=l+r>>1;
        if( Query(x,y,mid,k) )
            r=mid;
        else
            l=mid;
    }
    if( Query(x,y,l,k) )
        return l;
    return r;
}
int main()
{

	//freopen("count.in","r",stdin);
	//freopen("bf.out","w",stdout);

    int i,x,y,k;
    cin>>n>>m;
    for(i=1;i<=n;i++)
        f[i]=getint(),maxnum=max(maxnum,f[i]);
    for(i=1;i<n;i++)
        x=getint(),y=getint(),add(x,y),add(y,x);
    bfs();
    memcpy(c+1,a+1,n<<2);
    sort(c+1,c+n+1);
    Build_Tree(1,n,0);
    for(i=1;i<=m;i++)
    {
        x=getint();y=getint();k=getint();
        x^=ans;
        ans=Divide(x,y,k);
        output(ans);
        if(i!=m)
        	puts("");
    }
    return 0;
}
时间: 2024-12-14 12:54:09

BZOJ 2588 Count on a tree 主席树+倍增LCA的相关文章

【BZOJ-2588】Count on a tree 主席树 + 倍增

2588: Spoj 10628. Count on a tree Time Limit: 12 Sec  Memory Limit: 128 MBSubmit: 3749  Solved: 873[Submit][Status][Discuss] Description 给定一棵N个节点的树,每个点有一个权值,对于M个询问(u,v,k),你需要回答u xor lastans和v这两个节点间第K小的点权.其中lastans是上一个询问的答案,初始为0,即第一个询问的u是明文. Input 第一行

BZOJ 2588: Spoj 10628. Count on a tree 主席树+lca

2588: Spoj 10628. Count on a tree Description 给定一棵N个节点的树,每个点有一个权值,对于M个询问(u,v,k),你需要回答u xor lastans和v这两个节点间第K小的点权.其中lastans是上一个询问的答案,初始为0,即第一个询问的u是明文. Input 第一行两个整数N,M. 第二行有N个整数,其中第i个整数表示点i的权值. 后面N-1行每行两个整数(x,y),表示点x到点y有一条边. 最后M行每行两个整数(u,v,k),表示一组询问.

【BZOJ2588】Spoj 10628. Count on a tree 主席树+LCA

[BZOJ2588]Spoj 10628. Count on a tree Description 给定一棵N个节点的树,每个点有一个权值,对于M个询问(u,v,k),你需要回答u xor lastans和v这两个节点间第K小的点权.其中lastans是上一个询问的答案,初始为0,即第一个询问的u是明文. Input 第一行两个整数N,M. 第二行有N个整数,其中第i个整数表示点i的权值. 后面N-1行每行两个整数(x,y),表示点x到点y有一条边. 最后M行每行两个整数(u,v,k),表示一组

spoj cot: Count on a tree 主席树

10628. Count on a tree Problem code: COT You are given a tree with N nodes.The tree nodes are numbered from 1 to N.Each node has an integer weight. We will ask you to perform the following operation: u v k : ask for the kth minimum weight on the path

bzoj 2588 Count on a tree 解题报告

Count on a tree 题目描述 给定一棵\(N\)个节点的树,每个点有一个权值,对于\(M\)个询问\((u,v,k)\),你需要回答\(u\) \(xor\) \(lastans\)和\(v\)这两个节点间第\(K\)小的点权.其中\(lastans\)是上一个询问的答案,初始为\(0\),即第一个询问的u是明文. 输入输出格式 输入格式: 第一行两个整数\(N,M\). 第二行有\(N\)个整数,其中第\(i\)个整数表示点\(i\)的权值. 后面\(N-1\)行每行两个整数\((

bzoj 2588 Count on a tree

Description 给定一棵N个节点的树,每个点有一个权值,对于M个询问(u,v,k),你需要回答u xor lastans和v这两个节点间第K小的点权.其中lastans是上一个询问的答案,初始为0,即第一个询问的u是明文. Input 第一行两个整数N,M. 第二行有N个整数,其中第i个整数表示点i的权值. 后面N-1行每行两个整数(x,y),表示点x到点y有一条边. 最后M行每行两个整数(u,v,k),表示一组询问. Output M行,表示每个询问的答案.最后一个询问不输出换行符 S

P2633 Count on a tree(主席树)

题目描述 给定一棵N个节点的树,每个点有一个权值,对于M个询问(u,v,k),你需要回答u xor lastans和v这两个节点间第K小的点权.其中lastans是上一个询问的答案,初始为0,即第一个询问的u是明文. 输入输出格式 输入格式: 第一行两个整数N,M. 第二行有N个整数,其中第i个整数表示点i的权值. 后面N-1行每行两个整数(x,y),表示点x到点y有一条边. 最后M行每行两个整数(u,v,k),表示一组询问. 输出格式: M行,表示每个询问的答案. 输入输出样例 输入样例#1:

SPOJ COT Count on a tree(主席树+倍增lca)

思路:这个题其实就是树上的第k小,主席树的本质还是类似于前缀和一样的结构,所以是完全相同的,所以我们在树上也可以用同样的方法,我们对于每一个节点进行建树,然后和普通的树上相同,ab之间的距离是等于 root[a]+root[b]-root[lca[a,b]]-root[fa[lca[a,b]]] 代码: 复制代码#include <bits/stdc++.h>using namespace std;const int maxn=1e5+7;const int POW=18;int num[ma

spoj COT - Count on a tree(主席树 +lca,树上第K大)

您将获得一个包含N个节点的树.树节点的编号从1到?.每个节点都有一个整数权重. 我们会要求您执行以下操作: uvk:询问从节点u到节点v的路径上的第k个最小权重 输入 在第一行中有两个整数?和中号.(N,M <= 100000) 在第二行中有N个整数.第i个整数表示第i个节点的权重. 在接下来的N-1行中,每行包含两个整数u v,它描述了一个边(u,v). 在接下来的M行中,每行包含三个整数u v k,这意味着要求从节点u到节点v的路径上的第k个最小权重的操作. 解题思路: 首先对于求第K小的问