内核抢占实现(preempt) 【转】

转自:http://blog.chinaunix.net/uid-12461657-id-3353217.html

一、什么叫抢占
所谓抢占,说白了就是进程切换。
linux的用户空间,进程A在执行中,来(硬?)中断打断A,从中断处理程序返回时,如果有更高优先级进程B在排队的话,那么执行进程B。 用户空间下进程总是可抢占的

在linux的内核空间就不一定了,linux 2.4是不可抢占的,实时性就会降低,如下面这个样子:


二、抢占的API

preempt_enable()  开启抢占
preempt_disable() 禁止抢占

内核中每个进程数据结构里有一个计数器preempt_count
抢占的开启与禁止,操作当前进程的preempt_count
内核在进行进程调度的时候,只要prempt_count为0,内核就可以进行抢占。
    struct thread_info {
        struct task_struct *task; /* main task structure */
        ............//省略
        int     cpu;              /* cpu we‘re on */
        int     preempt_count;    /* 0 => preemptable,  <0 => BUG */
    };

#define preempt_enable() \
    do { \
        preempt_enable_no_resched(); \
        barrier(); \
        preempt_check_resched(); \
    } while (0)

#define preempt_disable() \
    do { \
        inc_preempt_count(); \
        barrier(); \
    } while (0)

#define preempt_enable_no_resched() \
    do { \
        barrier(); \
        dec_preempt_count(); \
    } while (0)

#define inc_preempt_count() add_preempt_count(1)
    #define dec_preempt_count() sub_preempt_count(1)
    #define add_preempt_count(val) do { preempt_count() += (val); } while (0)
    #define sub_preempt_count(val) do { preempt_count() -= (val); } while (0)
    #define preempt_count() (current_thread_info()->preempt_count)

三、发生抢占的时机
linux进程调度的核心函数是 schedule(),进程调度就是在这里做的。
schedule的调用分为主动调用和被动调用。
主动调用是指内核显示的直接去调用shedule(),如当前进程调用了可休眠函数,里面会调用schedule
被动调用是指在系统调用、中断处理或异常处理结束之后,由相应的回调函数调用schedule
判断完当前进程是否可抢占,才会接着去调用schedule()

只看了看中断返回时schedule被动调用的情况
至于主动调用的地方就太多了,什么进程结束,pause等等,没耐心看了。。。

3.1 从中断返回时

首先是从中断处理程序do_IRQ()返回后,会调用ret_from_except() (看《PowerPC中断相关知识》)
ret_from_except()里要先check一下,判定前面被中断的执行体是运行在用户空间还是内核空间,
在决定返回到用户空间或内核空间

用户空间的话:(现在知道为什么用户空间程序总是可抢占了吧) 
ret_from_except 
   --> user_exc_return 
        --> do_work 
          --> 调用 do_signal 和 schedule

内核空间的话:(编译内核时要打开可抢占选项才行)
ret_form_except 
    --> resume_kernel 
        --> preempt_schedule_irq 
          --> schedule

.globl ret_from_except
ret_from_except:
LOAD_MSR_KERNEL(r10,MSR_KERNEL)  //将MSR_KERNEL常量设置到MSR,以禁止外部中断
SYNC                             //Some chip revs have problems here...
MTMSRD(r10)                      //disable interrupts

lwz r3,_MSR(r1)                  //读栈中的MSR[PR],Returning to user mode?
andi. r0,r3,MSR_PR
beq resume_kernel

user_exc_return:                   //r10 contains MSR_KERNEL here
rlwinm r9,r1,0,0,(31-THREAD_SHIFT) //Check current_thread_info()->flags
lwz r9,TI_FLAGS(r9)
andi. r0,r9,(_TIF_SIGPENDING|_TIF_RESTORE_SIGMASK|_TIF_NEED_RESCHED)
bne do_work
restore_user:

#ifdef CONFIG_PREEMPT
b restore

resume_kernel:
rlwinm r9,r1,0,0,(31-THREAD_SHIFT) /* check current_thread_info->preempt_count */
lwz r0,TI_PREEMPT(r9)
cmpwi 0,r0,0                       /* if non-zero, just restore regs and return */
bne restore
lwz r0,TI_FLAGS(r9)
andi. r0,r0,_TIF_NEED_RESCHED
beq+ restore
andi. r0,r3,MSR_EE                /* interrupts off? */
beq restore                       /* don‘t schedule if so */
1: bl preempt_schedule_irq
rlwinm r9,r1,0,0,(31-THREAD_SHIFT)
lwz r3,TI_FLAGS(r9)
andi. r0,r3,_TIF_NEED_RESCHED
bne- 1b
#else
resume_kernel:
#endif /* CONFIG_PREEMPT */
////////////////////////////////////////////////////////////////////////////////////
do_work:            /* r10 contains MSR_KERNEL here */
    andi.   r0,r9,_TIF_NEED_RESCHED
    beq do_user_signal

do_resched:         /* r10 contains MSR_KERNEL here */
    ori r10,r10,MSR_EE
    SYNC
    MTMSRD(r10)     /* hard-enable interrupts */
    bl  schedule
recheck:
    LOAD_MSR_KERNEL(r10,MSR_KERNEL)
    SYNC
    MTMSRD(r10)     /* disable interrupts */
    rlwinm  r9,r1,0,0,(31-THREAD_SHIFT)
    lwz r9,TI_FLAGS(r9)
    andi.   r0,r9,_TIF_NEED_RESCHED
    bne-    do_reschedandi.   r0,r9,_TIF_SIGPENDING
    beq restore_user
do_user_signal:         /* r10 contains MSR_KERNEL here */

asmlinkage void __sched preempt_schedule_irq(void){
    struct thread_info *ti = current_thread_info();
    BUG_ON(ti->preempt_count || !irqs_disabled());
    do {
        add_preempt_count(PREEMPT_ACTIVE);
        local_irq_enable();
        schedule();
        local_irq_disable();
        sub_preempt_count(PREEMPT_ACTIVE);
        barrier();
    } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
}

asmlinkage void __sched preempt_schedule(void){
    struct thread_info *ti = current_thread_info();
    //preempt_cout非0的话,就不调用schedule
    if (likely(ti->preempt_count || irqs_disabled()))
        return;

do {
        add_preempt_count(PREEMPT_ACTIVE);
        schedule();
        sub_preempt_count(PREEMPT_ACTIVE);
        barrier();
    } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
}
#########################################################################################;
 内核中的执行路径主要有:
 1  用户进程的内核态,此时有进程context,主要是代表进程在执行系统调用等。
    还包括,内核中自己的进程,如 ksoftirqd 等等
 2  中断或者异常或者自陷等,从概念上说,此时没有进程context,不能进行context switch。
 3  bottom_half,从概念上说,此时也没有进程context。
 4  同时,相同的执行路径还可能在其他的CPU上运行。

Linux2.6中网络代码中的preempt_enable/disable移到softirqd调用的地方原因是这样的.
一、部分softirq是isr处理之后调用的,
    对于这部分代码,由于是在底半处理中运行,必须是是在运行进程系统调用之前返回的.
    所以实际上preempt_disable(); preempt_enable();代码对于他们来说是没有意义的.
二、部分softirq是在ksoftirqd的内核线程运行的,
    因为这个相当于运行在进程的内核空间,由于软中断都是对中断上半部的继续,
    所以这些工作都需要尽快的完成.所以在softirqd运行的时候,禁止了preempt,
    这样就可以保证softirq运行完之后才会调度下一个进程,因为softirq里面的所有函数都不会睡眠.

时间: 2024-10-28 06:23:40

内核抢占实现(preempt) 【转】的相关文章

Linux内核抢占机制 - 简介

本文首发于 http://oliveryang.net,转载时请包含原文或者作者网站链接. 本文主要围绕 Linux 内核调度器 Preemption 的相关实现进行讨论.其中涉及的一般操作系统和 x86 处理器和硬件概念,可能也适用于其它操作系统. 1. 背景知识 要深入理解 Preemption 必须对操作系统的 Context Switch 做一个全面的梳理.最终可以了解 Preemption 和 Context Switch 概念上的区别与联系. 1.1 Context Switch C

Linux内核抢占实现机制分析【转】

Linux内核抢占实现机制分析 转自:http://blog.chinaunix.net/uid-24227137-id-3050754.html [摘要]本文详解了Linux内核抢占实现机制.首先介绍了内核抢占和用户抢占的概念和区别,接着分析了不可抢占内核的特点及实时系统中实现内核抢占的必要性.然后分析了禁止内核抢占的情况和内核抢占的时机,最后介绍了实现抢占内核所做的改动以及何时需要重新调度. [关键字]内核抢占,用户抢占,中断, 实时性,自旋锁,抢占时机,调度时机,schedule,pree

[linux内核][linux中断]——内核抢占

1,禁止内核抢占的函数是preempt_disable(),允许内核抢占的方法是preempt_enable() 2,真正的上锁前,为何要调用preempt_disable()来关闭抢占的case http://blog.csdn.net/kasalyn/article/details/11473885 [cpp] view plaincopy static inline void raw_spin_lock(raw_spinlock_t *lock) { preempt_disable();

Linux下的内核抢占

2017-03-03 很遗憾之前在介绍进程调度的文章中,虽然涉及到了内核抢占,但是却没有对其进行深入介绍,今天就稍微总结下内核抢占. 内核抢占在一定程度上减少了对某种事件的响应延迟,这也是内核抢占被引入的目的.之前的内核中,除了显示调用系统调度器的某些点,内核其他地方是不允许中断的,如果内核在做一些比较复杂的工作,就会造成某些急于处理的事得不到及时响应.针对内核抢占其实本质上也是对当前进程而言(不知道这么描述是否合适),因为内核是为用户程序提供服务,换言之,其本身不会主动的去执行某个动作.这里内

Linux内核抢占实现机制分析

Sailor_forever  [email protected] 转载请注明 http://blog.csdn.net/sailor_8318/archive/2008/09/03/2870184.aspx [摘要]本文详解了Linux内核抢占实现机制.首先介绍了内核抢占和用户抢占的概念和区别,接着分析了不可抢占内核的特点及实时系统中实现内核抢占的必要性.然后分析了禁止内核抢占的情况和内核抢占的时机,最后介绍了实现抢占内核所做的改动以及何时需要重新调度. [关键字]内核抢占,用户抢占,中断, 

Linux内核抢占机制 - 实现

本文首发于 http://oliveryang.net,转载时请包含原文或者作者网站链接. 本文主要围绕 Linux 内核调度器 Preemption 的相关实现进行讨论.其中涉及的一般操作系统和 x86 处理器和硬件概念,可能也适用于其它操作系统. 1. Scheduler Overview Linux 调度器的实现实际上主要做了两部分事情, 任务上下文切换 在 Preemption Overview 里,我们对任务上下文切换做了简单介绍.可以看到,任务上下文切换有两个层次的实现:公共层和处理

Linux用户抢占和内核抢占详解(概念, 实现和触发时机)--Linux进程的管理与调度(二十)

1 非抢占式和可抢占式内核 为了简化问题,我使用嵌入式实时系统uC/OS作为例子 首先要指出的是,uC/OS只有内核态,没有用户态,这和Linux不一样 多任务系统中, 内核负责管理各个任务, 或者说为每个任务分配CPU时间, 并且负责任务之间的通讯. 内核提供的基本服务是任务切换. 调度(Scheduler),英文还有一词叫dispatcher, 也是调度的意思. 这是内核的主要职责之一, 就是要决定该轮到哪个任务运行了. 多数实时内核是基于优先级调度法的, 每个任务根据其重要程度的不同被赋予

内核抢占

Tomcat源码学习前的准备工作 注:由于网上的帖子大部分没有配套的图片和错误的分析,所有费了半天劲整理了此篇博客,希望大家少走弯路吧 下面我们就开始我们的Tomcat源码学习之旅. 1. 下载Tomcat6.0的源代码 首先,我们得下载Tomcat6.0的源代码.Tomcat源代码的版本控制工具不是CVS,而是Subversion,如果您的机器上没有安装Subversion,请从http://subversion.tigris.org/servlets/ProjectDocumentList?

Linux内核抢占

主要介绍内核抢占的相关概念和具体实现,以及抢占对内核调度和内核竞态和同步的一些影响. 1. 基本概念 用户抢占和内核抢占 用户抢占发生点 当从系统调用或者中断上下文返回用户态的时候,会检查need_resched标志,如果被设置则会重新选择用户态task执行 内核抢占发生点 当从中断上下文返回内核态的时候,检查need_resched标识以及__preemp_count计数,如果标识被设置,并且可抢占,则会触发调度程序 内核代码由于阻塞等原因直接或间接显示调用schedule,比如preemp_